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NOMENCLATURE

symbolic and algebraic manipulation
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SUMMARY

Compared to numerical analysis, symbolic and al gebraic manipulation is unfamiliar to
people in the research field. As its name implies, symbolic and algebraic manipulation can be
simply interpreted as a computerized operation which can retain symbols throughout
computations and express results in terms of symbolic forms. For example, the coefficients a,
b, and ¢ in the quadratic polynomial equation ax®+bx+c=0do not need to be known in order to
find its roots. The equation itself can be directly input to a computer and the results will be

(-b+ Vb -dac)  (=b-b"-—dac)
xl = 2a and X 5 = 2a
If the numerical values are required, three coefficients can be specified and solutions will be

expressed as numbers,

From the example above, at least two unique characteristics of symbolic and al gebraic
manipulation can be observed. First unlike numerical analysis, the solutions from symbolic and
algebraic manipulation are exact and therefore no round-off error is introduced. Second, the
solutions are the same as those derived by hand. Therefore the extension of human capability to
handle more sophisticated fomulations becomes feasible by computer.

In the first chapter of this report, the history of symbolic and algebraic manipulation is
introduced. The sencond chapter chronologically reviews the literature regarding the application
of symbolic and algebraic manipulation in the engineering field. The capabilities of symbolic
and algebraic manipulators are demonstrated in chapter three by selected examples. Chapters
four through six demonstrate applications of symbolic and algebraic manipulation. Chapter
four describes the automatic formulation of applied mechanics problems, chapter five covers
the materially nonlinear, rigid-plastic ring compression problem, and chapter six discusses
plate problems. The final chapter summarizes the overall conclusions of this report.

It is well known that there are some difficuilties existing in the symbolic and algebraic
field. The report proposes a remedy to avoid the difficulties and successf ully accomplishes the
applications. Due to this breakthrough, the solution of some previously insolvable problems
become available. In addition, one of the advantages found in this research is believed to be

crucial for improving the execution efficiency of numerical programs.



CHAPTER 1

HISTORY OF SYMBOLIC AND ALGEBRAIC MANIPULATION

1.1 Introduction

Symbolic and Algebraic Manipulation (abbreviated as SAM) software is one of the new
products of modem technology for use with hi ghly developed digital computers. Traditionalists
might say that SAM software is a misuse of modemn computers. This is true if the viewpoint is
adopted that a computer is a machine which only counts numbers. This viewpoint, however,
severely limits the emerging artificial intelligence capabilities of computers. For instance, in
addition to numbers, there are many symbols which define appropriate mathematical relations
in a calculus book. Can we ask a computer to do these analytical derivations for us? This is a
great question which finally led to the birth of SAM and added "soul" to the computer, to make
it think more like a human brain. This idea, which originated before 1953, has had an impact
on a variety of fields, such as science, industry and education. Therefore, although its history
is not as long as that of the classical sciences, its impact has been so large that a record of its
history is deserving.

At the initiation of this dissertation effort in 1986, there were already a number of SAM
systems available on the market. Some of them were more than ten years old, such as
FORMAC, REDUCE and MACSYMA. Others were Just being developed, such as muMATH
and MATHEMATICA. Ironically, most relevant documents either ignore the history of these
systems or just skim over them briefly. Only one book, written in 1969 by Jean E. Sammet
[1], includes historical details, however, it is too old to cover recent developments. Most of the
major systems used today have been produced since then. Therefore, it is necessary to collect,
rewnite, and update the history of the SAM systems. It is hoped that the interested researchers
will get a complete picture of the development of SAM systems. Through an understanding of
 the history they will be able to grasp the direction of the field and devote themselves towards
making a further contribution. This is the major purpose of the chapter. It is much more
important than just knowing how to run the SAM systems.

887



The first idea for using computers to do SAM can be traced back to two master theses
published in 1953 ([2],[3]). Three years later, what is believed to be the earliest SAM system,
called PM, was developed at IBM [4). Now there are many SAM systems on the market for
various computers. Some of them are designed for general purpose usage, while others have
been developed for particular applications. Generally speaking, the evolution of symbolic and
algebraic manipulation can be classified into three stages. They are :

1. The first generation (1953-1965)---software to appear in this generation was PM,
ALGY, FORMAC, MATHLAB and ALTRAN. Because of the limitation of hardware
capacity, the systems in this stage were small in size and immature in content.
Therefore, most of them became obsolete or were revised.

2. The 2nd generation (1966-1975)---software to appear in this generation was REDUCE
and MACSYMA. These systems took advantage of the improvement of hardware
memory capacity. They contain many built-in functions, are large and are for general

purpose usage. All of them run on the mainframe.

3. The 3rd generation (1976- present)---some representatives of more recent systems are
muMATH, MATHEMATICA, and DERIVE. Unlike the systems of the second
generation, the systems in this generation are desi gned to run on microcomputers. This
has been possible due not only to the improvement of memory capacity in
microcomputers, but also due to the requirement of most users who Just need quick
checks or moderate manipulations.

Details of the histories of the systems will be described in the following subsections

individually. For the sake of clarification, a summary is also included in Table 1.1.
1.2 History of SAM systems
1.2.1 PM

PM is believed to be the earliest computerized algebraic system in the world. [t was
developed by George E. Collins at the IBM research center in Yorktown Hei ghts, New York.
Although the first document was published in 1966 [4] its beginning dates back to 1956.
Written in assembly language for the IBM 701 computer, PM contained the subroutines for
addition, subtraction and multiplication of multiple-precision integers, and subroutines for
performing the same operations on multivariate polynomials with multiple-precision integer
coefficients. Between 1956 and 1966 PM was reprogrammed for the newer IBM computers



(e.g. 709, 7090 and 7094), and augmented to include new operations (such as integer ged)
with various improvements (e.g. the incorporations of list processing and dynamic storage
allocation). In 1966 Dr. Collins became a professor of computer science at the University of
Wisconsin. With the aid of graduate students, the PM system was converted to the SAC-1
system in 1973. In spite of its eventual replacement, PM, as the first SAM system, was still
very significant in the field.

1.2.2 ALGY

Although ALGY has few functions, it was one of the earliest SAM systems in the
world. The developmental work was started at Western Development Lab-Philco Co. in Palo
Alto, California by Bernick, Callender and Sanford, around 1961 [5]. It was interactive and
allowed expressions written in a notation similar to FORTRAN as input, with some deviations.
For example, the § was used instead of ** to represent exponentiation, and all natural integers
were expressed as fractions, for example, 0 and I were denoted by 0/1 and 1/1, respectively. It
only contained a few commands, such as :

* OPEN : expanding the expression in the parenthesis

* SBST : making substitution

* FCTR : factoring a given expression

* TRGA : expanding the sin(a+b) into sin(a Jeos(b)+sin(b)cos(a)

Which is why the authors said that only two hours instruction was enough to use it.
Although ALGY didn't come into extensive use, some of its ideas were succeeded by the
FORMAC system, which is still popular today.

1.2.3 FORMAC

FORMAC is an acronym of FORmula MAnipulation Compiler. It was developed by J.
E. Sammet and Robert G. Tobey at IBM's Boston Advanced Programming Department in
July, 1962 [1]. Five months later (December, 1962), the first complete draft of language
specifications was prepared and implementation design started immediately thereafter. After 18
months of extensive experiments, the first complete version was successf ully running on the
IBM 7090/94 computer in April, 1964. For the sake of obtaining feedback from users to make
further improvement to the system, FORMAC was released for public use by the authors
themselves (not by IBM) in November, 1964. This version of FORMAC was written in



FORTRAN IV. Three years later (November, 1967), the new version of FORMAC written in
PL/I was released by the authors for use on IBM/360 systems.

The FORTRAN version of FORMAC kept most commands and notations of
FORTRAN IV. In addition, there were a couple of new commands added to allow it to do
algebraic manipulations. For example, LET assigns symbols to variables instead of numbers in
FORTRAN, SUBST makes substitution, EXPAND removes all parentheses in expressions
and COEFF obtains the coefficients of variables. The major PL/I FORMAC capabilities can be
divided into the following categories :

1. User control of simplification : EXPAND for expanding the parentheses expression,
DIST for applying the distributive law to all products of sums, etc.

2. Substitution : EVAL(expr,a,b) replaces a in expr by b.
3. Differentiation : DERIV performs partial differentiation.

4. Expression analysis : COEFF(exprl,expr2) returns the coefficient of exprl in expr2.
NUM and DENOM return the numerator and denominator, respectively. HHGHPOW
and LOWPOW return the highest and lowest power.

5. Storage allocation : SAVE(var) for storing the var to secondary storage.
6. Output : PRINT_OUT (expr) to print out the required expressions.

7. Built-in functions : these include trigonometric, logarithm, exponentiation, square root,
hyperbolic function, etc.

8. User defined function : the user can define functions as needed.

FORMAC is now one of the most popular SAM systems. It is the first reasonably
general purpose system to receive extensive usage worldwide. With the advantages of longer
history and larger numbers of users, its accumulated contributions to SAM field are
remarkable. In 1977, the new version, called FORMAC 73, was released to replace the old

one.



1.2.4 MATHLAB

MATHLAB! system was developed by C. Engelman and his employees at MITRE Co.
in 1964 [6]. Its source language is LISP, but the commands are defined as English words. For
example, PLEASESIMPLIFY (x,y) is the command to simplify x and name it as y. In the fall
of 1967, the first version of MATHLAB was replaced by the second version, MATHLAB 68,
which operated on a PDP-6 machine with 256 K core memory. The input and output were
through a teletype-like keyboard with a fixed character display scope. The notations in the
second version were more ALGOL -like. MATHLAB was the first complete on-line system.

1.2.5 ALTRAN

ALTRAN is a system developed at the BELL TELEPHONE Laboratory in Murray Hill,
New Jersey by W. S. Brown, M. D. Mcllroy, D. C. Leagues and G. S. Stoller [1]. It was
running in late 1964 on the IBM 7090/7094, 7040/44, etc. The basic languages which
ALTRAN adapted were a mixture of FORTRAN II and FORTRAN V. Since it was limited to
use in the BELL Lab., its contributions to the SAM field were small.

1.2.6 REDUCE

REDUCE was developed by A. C. Hearn of Rand Corporation, California, in 1963
[7]. At that time, he met Dr. John McCarthy, an inventor of the LISP language, who suggested
the use of LISP for the problems of elementary particle physics. Since then, Dr. Hearn, as a
theoretical physicist, has worked in the SAM area. In August 1966, the first publication was
issued [8]. This paper only talked about the specific application of SAM techniques to
elementary particle physics. Two years later (1968), the first paper describing a general algebra
system, "REDUCE", was published [S]. The name of REDUCE originated from this paper. Its
name is not an acronym. According to the description from the author himself , iIts name was
actually intended as a wit. He said "al gebra system then as now, tended to produce very large
expressions for many problems, rather then reduce the results to a more manageable form".
The system at this time was called REDUCE for distinction from the new version, REDUCE 2,
which appeared in 1970. The bi g improvement was that the whole system was written in an
ALGOL-like dialect (call RLISP), rather than the parenthesized notation of LISP in which
REDUCE was written. At this time, the REDUCE 2 system was also released to users, making
the beginnings of a user community. Thereafter, REDUCE 2 was implemented successfully on

L MATHLAB is not to be confused with MATLAB. MATLARB is the numerical software for matrix
operations, while MATHLARB is another symbolic and algebraic manipulator.

6



the Michigan Terminal System (MTS) of the University of Michigan by Mike Alexander. After
a long silence, REDUCE 3 was distributed in 1983. Several significantly new packages were
added in this version, such as analytic integration, multivanate factorization, arbitrary precision
real arithmetic and equation solving. Following REDUCE 3, upgraded versions were also
released. They were REDUCE 3.1 released in 1984, REDUCE 3.2 in April, 1985, REDUCE
3.3 on July 15, 1987. Each of them contains bug fixes and additional capabilities. Instead of
implementation on MTS, the REDUCE 3.3 was first implemented on the APOLLO workstation
in the Computer Aided Engineering Network (CAEN) of the University of Michigan.
REDUCE 3.3 was also updated once in January 15, 1988.

REDUCE system has become one of the most well-known SAM systems. Its general
purpose design makes it possible to be used in a wide variety of areas. Its contributions are
confirmed by the number of papers published in different fields.

1.2.7 SCHOONSCHIP

SCHOONSCHIP was designed by M. Veltman at CERN, Switzerland in 1964 [10].
Its major applications are in the field of high energy physics, but it is sufficiently general to be
used for other calculations. It can deal easily with expressions of 104 to 105 terms on the CDC
6000 computer. It was limited to use within CERN.

1.2.8 ANALITIK

ANALITIK was developed at the Institute of Cybemnetics in Kiev, Soviet Union, by the
direction of the well known Soviet cybernetician and academician V. M. Glushkov [11]. The
first paper discussing the system features was published in 1964. The language it used was
ALGOL-like and close to that of traditional mathematical notation and natural language. It
possessed interactive and batch processing modes. Since its implementation is highly machine
dependent, ANALITIK has only run on the MIR-2 computer.

1.2.9 FLAP

FLAP was written in LISP 1.5 by A. H. Morris, Jr. at the U.S. Naval Weapons
Laboratory in Dahlgren, VA. prior to 1967 [1]. Obviously, the FLAP system wasn't released
to the public.



1.2.10 SAC

The SAC system was developed by Dr. George E. Collins at the University of
Wisconsin, Madison. The first version, SAC-1, was distributed in 1967 [4]. This was a highly
portable general purpose system, developed to replace one of the very earliest computer algebra
system, PM in IBM [see 1.2.1]. SAC-1 was replaced by SAC-2 in July, 1980. The SAC-2
was programmed in ALDES language, which was designed by Rudiger Loos and G.E. Collins
in 1973 to 1974. The SAC-2 system also provided the translator from ALDES to standard
FORTRAN to maintain its portability.

1.2.11 MACSYMA

MACSYMA is an acronym of project MAC's SY mbolic MAnipulator. It was originally
designed by C. Engelman, W. Matin, J. Moses for project MAC at M.L.T. in 1968. The
implementation of it began in July, 1969. The system has quintupled in size since the first
paper describing it appeared in 1971 ([12] [13] [14] [15]). It was made available over the
ARPA networks in May, 1972. MACSYMA has a lot of built-in mathematical functions and
graphic facilities which have made it one of the most powerful SAM systems in the world.
Unfortunately, the University of Michigan didn't have it until September, 1988. The one
implemented on the APOLLO workstation in CAEN of the University of Michigan still doesn't
have a graphics package.

1.2.12 SCRATCHPAD

Although the name of SCRATCHPAD was chosen in 1970, the initial work on it can
be traced back to 1965. The SCRATCHPAD system was designed principally by James H.
Griesmer, Richard D. Jenks, Fred Blair, David Yun, and their colleagues, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York ([16] [17] [18)). Unfortunately,
the name of SCRATCHPAD was not used for the first paper, presented in Bonn in 1970. One
year later, a revised version by Dick Jenks, called SCRATHPAD/1, was demonstrated at
SYMSAMIII in March 1971. After combining some new features; such as history file
(allowing users to backtrack), and system commands, the first completed SCRATCHPAD/1
manual was eventually published in 1975. After this, there seemed a stagnation in the progress
of the SCRATCHPAD system due to personnel changes. Jim Griesmer left the group to be a
manager of education at IBM research and Dick Jenks went to the University of Utah for a
sabbatical. When Dick Jenks returned to Yorktown Heig\hts in the fall of 1977, David Yun
agreed to organize the "mode-base" ideas originated by Dick Jenks in 1973. This led to the



NEWSPAD which thereafter was renamed to SCRATCHPAD 84 at the New Y ork conference
in 1984. However, the name of SCRATCHPAD 84 was not quite appropriate since it would
take more than one year to finish the system. Therefore it was changed into SCRATCHPAD 11,
which is the name used now. [t became available in 1985 for test and evaluation to a limited
number of users from an IBM owned mainframe via telenet, CSNET and ARPANET. As yet,
it is not commercially available.

1.2.13 CAMAC

The CAMAC system was designed by Vera Pless in 1973 at M.I.T. [19]. The first
version of it ran interactively and was written in FORTRAN with sections in assembler
language. When Vera Pless moved to Chicago Circle in 1975, the CAMAC system was
transferred to the Circle's IBM 370-158 by William Pattern. The name of CAMAC is an
acronym of Combinatorial and Algebraic Machine Aided Computation. As the name implies, it

was for a specific application.
1.2.14 SHEEP

SHEEP was designed by I. Frick at the University of Stockholm, Sweden in 1975
((20]. [21]) It was specialized for manipulating components of tensors. The source language it
uses is MACRO-10. It runs on DEC PDP 10 and PDP 20. The first version of SHEEP, now
called SHEEP 1, was written in assembler code for the DEC-10/20 computer. Unlike the first
version, SHEEP 2 is written in standard LISP.

1.2.15 ORTOCARTAN

ORTOCARTAN is written in LISP. It was designed by Andrzej Krasinski in Poland in
1977 [22]. Its name is an acronym and is due to the specific application to the calculation of
Riemann, Ricci, Einstein and Weyl tensors from a given metric tensor using an ORTHonormal
set of CARTAN forms. Although the author said it could be relatively easily extended for other

uses, such as inverting matrices of arbitrary rank, it did not come into wide use.
1.2.16 MAPLE

The MAPLE system was designed by Bruce Char, Keith Geddes, W. Morven
Gentleman and Gaston Gonnet at University of Waterloo, Canada in December 1980 ([23]
[24]). The name "MAPLE" is not an acronym but rather it was simply chosen as a name with a
Canadian identity. There were two goals which oriented MAPLE's design. The first was to be



used on a time sharing mainframe computer. The second was to run it on a microprocessor-
based workstation. This was the major difference between MAPLE and REDUCE (or
MACSYMA).

1.2.17 muMATH

Written in muSIMP (a LISP-like language), muMATH was designed and developed by
David R. Stoutmeyer and Albert Rich at the University of Hawaii in 1977 [25]. The first
version was called muMATH-77 and was experimental. Two years later, the Software House,
Inc., was founded by David Stoutmeyer and the first product, muMATH-79, was distributed
to users for the CP/M-80 operation system or Apple II family Z80 machine with 64 K bytes
core memory required. The second product called, muMATH-83, was not released for the IBM
personal computer until 1983. The muMATH-83 needs 256 K bytes RAM memory. Recently,
DERIVE has taken over the place of muMATH-83. The significant improvement is that
DERIVE combines the numerical, algebraic and graphical functions together, rather than just
algebraic functions of muMATH. The DERIVE system requires 512 K memory space for
normal execution.

1.2.18 MATHLIB & SMP

MATHLIB is an interactive general purpose SAM system. [t was originally designed
and developed under the auspices of the Department of Mathematics at Harvey Mudd College,
California, in 1978. It was one of the products of Innosoft International Inc., of Claremont,
California and became commercially available in 1983. It can perform numerical and symbolic
operations. In addition, its graphical output is device-independent and allows it to be processed
by over 150 different graphics devices. The PRS subroutine embodied in the algebraic
subsystem of MATHLIB has more than 250 built-in functions for manipulation of
mathematical expressions.

SMP is another product of Innosoft International Inc.. It was desi gned at the California
Institute of Technology. It's written in C language and was originally developed to run on
VAX/780 under the UNIX operating system. In addition, there is a special design character in
SMP to allow for easy conversion between operating systems. It needs at least 2.5 megabytes
of memory space for typical usage.

10



1.2.19 MATHEMATICA

MATHEMATICA is a recent product of Wolfram Research, Inc. There are several
versions of MATHEMATICA for a variety of computers, such as for Apple Macintosh, DEC
VAX, IBM ,Cray, and so forth. It was designed and implemented by Stephen Wolfram, Daniel
Grayson, Roman E. Maeder, and their colléagues at the University of Illinois in 1988 [26]. It
integrates the algebraic manipulation, numerical computation, and graphical functions together
and allows the resultant expressions to be outputed in C-code, FORTRAN code, and text form.
Its source language is C. The memory requirement for normal operation is about 3.7 mega
bytes. The MATHEMATICA as well as DERIVE are expected to be two dominant systems in
the coming decade.

1.2.20 Mathcad

Mathcad is developed by Mathsoft, Inc. at Cambridge, Massachusetts. The earlier
version appeared on market around 1987. This system adopted the core functions of MAPLE
and extented itself by including the graphic capacity. It is written in C language. The latest
version 3.1 is available in 1992. This newest version can run in IBM, Macintosh PCs and unix
based machines. The minimum space requirements are two megabyte RAM and seven
megabyte hard disk. Unlike most of the SAM systems, the command inputs in this system are
menu driven. This allows users to communicate with machine by simply picking and clicking.
This unique feature not only saves users lots of efforts in typing but also reduces human errors

which sometimes turn out a unmanageable, hard-to-be-debugged results.
1.3  Conclusion
From a history of the SAM system, we can draw the following conclusions :

* The SAM systems evolved from small, immature systems to well-designed, muiti-

function systems, to compact systems which can be used on microcomputers.

e At present, there is no unique best system. The definition of the best SAM system
depends on many varnables, such as computer availability, availability of software,
familianzation with software, the problem to be solved, software contents, circumference

facility, and so forth.
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system year remarks
PM 1656 [BM
ALGY 1961 WDLP Co.
FORMAC 1962 IBM - Boston
MATHLAB 1964 MITRE Co.
ALTRAN 1964 BELL Lab.
REDUCE 1963 Rand Co,
SCHOONCHIP 1964 CERN
ANALITIK 1964 Soviet Unions
FLAP 1967 U.S. Navy
SAC 1967 Uni. of Wisconsin
MACSYMA 1968 M.LT.
SCRATCHPAD 1965 IBM-Yorktown Heights
CAMAC 1973 Vera Pless
SHEEP 1975 Sweden
ORTOCARTAN 1977 Poland
MAPLE 1980 Canada
muMATH & DERIVE 1977 Uni. of Hawaii
MATHLIB 1977 Harvey Mudd College
SMP 1977 Caltech
MATHEMATICA 1988 Uni. of Illinois
Mathcad 3.1 1992 Mathsoft Inc.

Table 1.1 : List of symbolic and algebraic systems
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CHAPTER 11

SURVEY OF THE LITERATURE ON SYMBOLIC AND ALGEBRAIC
MANIPULATION

2.1 Introduction

The documents published in the symbolic and al gebraic manipulation field are not as
plentiful as those in the area of numerical analysis. However, after a careful classif ication of the
existing documents, one finds that the developmental history is closely related to research
directions and content of the publications. In general, the documents about SAM may be
divided into four categories. They are :

1. About SAM system itself --- More than half of the existing papers belong to this class.
Most of them were published in the period of the first generation. The contents are
focused on the following topics :

(a)The introduction of the new SAM system, including the capacities, functions, etc.

(11{2]31.
(b) The technical reports of softwares [4][5][6][7] .

(c) The data structure, language and implementation [8][9)].

2. Applications to science --- This class of publications is the second largest of the existing
SAM papers. One of the major impetuses in developing SAM systems was due to the
requirements from scientists, especially in the fields of elementary particle, general
relativity and celestial mechanics. Some of the famous examples were collected in the
paper by Hearn [10]. One of them is the recalculation of Delaunay's moon coordinates
by Deprit, Henrard and Rom in 1970 [11] The others are such as Campbell and Hearn's
analysis of the Feyman diagram [13], Rudiger Loos' work about Archimedes' cattle
problem [14], and Roberts' and Boris' on the solution of partial differential equations
[15].
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3. Applications to engineering --- In fact, most engineering problems are not solvable
analytically. Therefore, numerical approximation usually predominates in the solution of
engineering problems. This is one of the reasons why the engineering applications of
SAM has not been as popular as those on science. However, there are two factors which
necessitate the use of symbolic and algebraic manipulation in engineering. The first is
that the accuracy requirement of a solution of numerical approximation becomes more
and more strict today. The second is that the problem to be solved usually involves more
sophisticated algebraic manipulation due to the more strict requirements of solutions.
Due to these factors, the applications of symbolic and algebraic manipulation to
engineering problems has became more popular recently. Some of the publications, such
as those written by Madson, Smith and Hoff [16], Levi [17], Wilkins [18], Noor and
Anderson [19], Korncoff and Fenven [20], Steinberg and Roache [21], will be
discussed in more detail in the next paragraph.

4. Application in the other fields --- In addition to science and engineering, Symbolic and
algebraic manipulation has been applicable in other fields, such as information
management [22], education [23][24] and business [25].

As time goes on, more and more applications will be reported in various fields. This is
due to the fact that :

1. The ongoing improvement in the memory space of hardware systems, especially
personal computers.

2. The availability of variously sound SAM software systems.

However, in order to see that scratch paper is replaced by the computer screen in all
areas, the people in the educational field should assume the responsibility of utilizing this new
tool. As the discussion in the paper, written by Richard Pavelle in 1985, points out [25], only
about 20 percent of people in the related field are aware of the existence of SAM system and
less than a quarter of these actually use them.

2.2 Reviews of SAM applications in engineering
(1) Computer algorithms for solving non-linear problems

A paper [16] published in 1965 is believed to be the earliest document which employed
computerized symbolic and algebraic manipulation to solve an engineering problem. The
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authors, W. A. Madson, L. B. Smith and N. J. Hoff , developed their own software to find the
solution for the post-buckling behavior of thin-walled circular cylindrical shells under axial
compression. The major commands developed by them were -

*SERIESMULT : To expand the expressions, e.g. (a*sinfx)+b*cos(y))".

*TRIGSPAND : To treat non-double trigonometric terms, such as sinz(x),
sin(x)*sin(2x)*cos(y) etc., into double tri gonometric terms like cos(y)*cos(x).

*SEARCHSTORE : To search and collect the coefficients of like trigonometric function,
then store them.

*NEWTNRAPH : To solve the nonlinear system equations obtained from the calling of the
last three commands by using the Newton-Raphson iteration method.

The application of the above commands to the shell post-buckling problem started at the
assumption of radial displacement,

w=t Z‘Al:’cos( inx/Ax)cos(jny/Ay)

Then by the strain-displacement relationship and Hook's law, the stresses could be obtained.
As the stresses (therefore the Airy stress function) were known, the membrane energy,
bending strain energy and the potential of axial load could be denived. The resultant total
potential energy was then minimized with respect to the coefficients of radial displacement w.
The system equations obtained after the minimization then could be solved by calling the
NEWTNRAPH command.

(2) Symbolic algebra by computer-applications to structural mechanics

One of the earliest publications of symbolic manipulation application in the engineering
field was in 1971, when only a few SAM systems existed. Only REDUCE and FORMAC
were mentioned in this paper. At the beginning of the paper [17] by I. M. Levi, he described
the story of SAM application in seeking the minimum theoretical post-buckling load for a thin
circular cylindrical shell under axial compression. Starting from 1941, Von Karman and Tsien
indicated that a low post-buckling load could be found with only two terms included in the
series expression of normal displacement. This inconsistency in the Von Karman-Tsien's
solution was not found until J. Kempner increased the series into three terms and found a
further lowering of the post-buckling load in 1954. Since then, additional investigations were
conducted as new terms were added into the series solution. But f inally everybody was limited
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by their inability to solve the complex algebraic equations without error. The drive to seek the
minimum load did not end until 1965 when Madson, Smith and Hoff of Stanford University
wrote the special program in ALGOL to increase the series into 14 terms and found the
minimum load approached zero, which revealed the basic fallacies in the application of the
Karman-Tsien procedure.

The second topic in the paper talked briefly about the derivation of a stiffness matrix for
a compatible triangular plate bending element by symbolic and algebraic maniputation. Then an
example of the calculation of creep strain rate in plate and shell problems was demonstrated
using SAM. This computation started from the x, y components of stress which were
expressed as a double trigonometric series, followed by the calculation of equivalent stress,
and ended in the substitution of the above quantities into strain rate equations. The resultant
fortran codes were printed out by REDUCE. The paper ended with a brief discussion on the
REDUCE capacities.

(3) Applications of symbolic algebra manipulation language for composite structures analysis

This paper [18] was published in 1973 by Dick J. Wilkins, Jr. of General
Dynamics/Convair Aerospace Division, Fort Worth, Texas. The author used PL/1 FORMAC to
calculate the strain energy for an anisotropic shell. The strain energy can be written as

T

rNx (€, )
N, £,
N £
1 x xy
v 'EIQ‘M, 1 492 (2.1)
M,| (X»]

Where
* N : stress resultants.
* M : moment resultants.
¢ £ : mid-plane strain.
* x : curvature.

» Q: shell surface area.
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* V : strain energy.

and the constitutive equations are expressed as follows :

rNx (An Alz A13 Bu BIZ Blaq(é',

N, A, A, A, B, B, B, £,

N,), AIB Azs A33 an st Bss €y ’

qu [~ Bn an Bna Dn Dnz D”'K, ( (22)
M, B, B, B, D, D, D, 1%

;M")’J _Bl3 Bz3 Bs3 D13 D23 D33J~K.XyJ

Where : Aij’ Bij’ Dij are the pe&inent constitutive components of Hooke's Law. The
equation (2.1) and (2.2) can be combined into the form

V - ';fn[{e YI{AXNe}+2{e) [B]{x} + {x}[Dx}ue (2.3)

Then the displacements are approximated as

W = EEC',",,,,X,,,Y,, (2.4)
u = ZZC"M%—”'-Yn (2.5)
Vv = ZZCZ,,,X,,,%};—" (2.6)

Where the Cij are constants to be determined by Rayleigh-Ritz method. By Vlasov shell
theory, the strain-displacement relations are

, = oL (2.7)
£, -%+% (2.8)
£y = Gt o (2.9)
K, =— ‘;:Wz (2.10)
Ky-_g;—”’z_% (2.11)
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Where R here is the radius of shell curvature.

With the assumption of a symmetric constitutive matrix, the calculation of the integrand
of equation (2.3) was done by FORMAC by the substitution of equations (2.4) to (2.12) into
(2.3). The Rayleigh-Ritz method was then applied to take the partial derivative with respect to

all undetermined constants in the displacement series. This was also manipulated by
ay .
>
and their denvatives. Since FORMAC was incapable of performing the symbolic integration at

. . . . . . ax ~
FORMAC. The resultant expressions were the energy variation which is in terms of .

that time, the informal "symbolic integration" was done by examining each term in the energy
vanation for a specific combinations of derivatives. Each time a certain type was found, it was
replaced by a symbol and an appropriate constant to allow for the non-dimensionalization of the
integrals. There were a total of twelve different integrations in the energy variation equation.
The final expressions were then slightly modified into FORTRAN code by adding DO loops
and suitably changing the indices by hand.

(4) Computerized Symbolic Manipulation in Structural Mechanics --- Progress and Potential

In the beginning of the paper [19], A. K. Noor and C. M. Anderson introduced the
symbolic and algebraic manipulator MACSYMA. These included the brief history, basic
capacities and special commands, as well as associated packages.

The second part of the paper gives three applications in the structural mechanics field by
using MACSYMA. They are :

1. Generation of characteristic arrays of finite elements for a shear flexible shallow shell
element --- There were three types of basic integrals for linear problems and three types
of basic integrals for geometrically nonlinear problems. These were

(a) Linear problems

A" - [ N'N'dQ (2.13)
2
B, - [ N'4,N'dQ (2.14)
a'
y i J
cl -fnmaazv 9,N'a@ (2.15)

(b) Geometrically nonlinear problems
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Co=J N3N G N (2.16)
a .
ik i
Dapyj = f ma“N apNjardeQ (2.17)
2

ijkn
-
afiyp

E fnma,,N"aﬁN’a,N"apN"dQ : (2.18)
The evaluation of integrals in equations (2.13) and (2.14) can be performed
analytically by MACSYMA. However in general the integrand of equations (2.15) to
(2.18) cannot be integrated exactly due to the existence of a Jacobian determinant in
the denominator of the integrand? Therefore the hybrid approach (numerical
quadrature plus symbolic manipulation) was proposed. The number of integrations to
be performed can be substantially reduced by the hel p of permutative and Dihedral
symmetries.

2. Evaluation of effective stiffness and mass coefficients of continuum models for repetitive
lattice structures --- The symbolic manipulations by MACSYMA included the evaluation
of strain components, calculation of strain energy (with the thermoelastic strain energy)
and kinetic energy, computation of stiffness and thermal coefficients as well as effective
mass coefficients, forming the Lagrangian of the system and finally obtaining the
governing differential equations. The numerical analysis started as soon as the governing
equations were obtained. This numerical analysis was also done in MACSYMA. The
results of mode shapes were then plotted out by MACSYMA''s graphic facility.

3. Application of the Raylei gh-Ritz technique to the free vibration analysis of laminated
composite elliptic plates --- The tasks done by MACSYMA in this application were

(a) Selecting approximation functions for each of the fundamental unknowns
displacement amplitude with undetermined coefficients and developing analytic
expressions for the specific strain and kinetic energies as quadratic functions of the
undetermined coefficients.

(b) Differentiating specific strain and kinetic energies with respect to the undetermined
coefficients symbolically.

(¢) Evaluating stiffness and mass coefficients by performing integrations over volume.

2This has been done successfully, see the details in chapter three.



(d) Simplifying the expressions for the nonzero stiffness and mass coefficients and
developing FORTRAN code.

After stiffness and mass coefficients had been evaluated, the vibration frequencies and
mode shapes could be obtained numerically by using any scheme for generalized eigenvalue
problems.

The last part of the paper discussed the problems which limited the applicability of
computerized symbolic manipulation. The major problems mentioned in the paper were
summarized as follows.

1. Production of large expressions during the computation (intermediate expressions

swell).

[}

. Slow speed of symbolic computation.

3. Low portability of large symbolic manipulation systems.

4. Need for analyst interaction during the symbolic computation.

5. Inability to estimate the storage requirements and CPU time for symbolic computations.
6. Problems associated with interface between algebraic and numerical calculations.

In addition, the authors suggested the directions of future research in this field. They

were

1. Reduction of a general (tensor) formulation of structural mechanics problem to its
computational level.

2. Hybrid computations.
3. Approximate symbolic integration of rational functions.
(5) Symbolic generation of finite element stiffness matrices

As the title implies [20], the authors A. R. Korncoff (Boeing computer service, Seattle
WA) and S. J. Fenves (Carnegie-Mellon University) used the symbolic processor MACSYMA
to assist in the development of a software to generate the stiffness matrices for finite element
analysis. These included the construction of the strain-displacement matrix, calculation of the
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determinant of the Jacobian, and multiplication of relevant matrices. The integrand was then
integrated symbolically if it was integrable (e.g. the constant strain iriangle element). Otherwise
it would be output as the function of the problem parameters for further numerical evaluation
(e. g. four-node quadrilateral element)3 . In addition, the software gave two options in the
material property matrix. One was "user-supplied" material property. The other was “library
supplied” which provides one-dimensional elasticity, plain stress, plain strain, axisymmetric,
and 3-D linear isotropic elasticity The example of constructing the isoparametric formulation
for constant strain triangle was also shown in the appendix of the paper.

(6) Symbolic manipulation and computational fluid dynamics

The authors S. Steinberg and P. J. Roache [21] employed the symbolic and algebraic
manipulator VAXIMA, a VAX version of MACSYMA, to transform the physical differential
equation and the boundary conditions into the rectangular region and then constructed the so
called stencil coefficient matrix for a finite difference scheme. The major ideas came from the
general elliptic problems. In physical coordinates, the linear elliptic equation could be
expressed as

i 2E n
ol ”E_I“v‘ ox ox | *2”1&1 tof +d (2.19)

Where B b;, ¢, d were given and were the function of coordinates in general.The problem
was to find a numerical approximation solution which satisfies equation (2.20) and the given

boundary conditions.

Lf =0 (2.20)

Since the physical domain is not regular in general, it is necessary to transform the
physical coordinates into the rectangular, computational coordinates in which the finite
difference scheme could be constructed easily. This coordinate transformation involved the
calculations of the Jacobian matrix, its determinant, and cofactors. The equation in new
coordinates would become

n 2 n
f - 25—3L+Eb‘,ggﬂ+6f‘+¢f (2.21)

y ‘95. &e}

3 The integration (2.15) for a four-node isoparametrical quadrilateral element has been
obtained exactly and will be discussed in detail in chapter three of this report.
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Where the tilde denoted that the quantities were functions of computational coordinates.

After the transformation of equation and boundary conditions had been done, the
centered difference method was employed to construct the finite difference scheme as follows :

C (e,6,e,)8(e +ilAe, e, +jAe p €tk Ac,) = R(e,e ,e,) (2.22)

[N 4

[elofe |k }s3
Where the coefficient ¢; jkwere called the stencil and was constructed by symbolic
manipulation. Taking advantage of the symmetric property, the number to be computed for

% could be dropped to 10 from 27. The resultant expressions of ¢ § then could be coded

C: .
Lj,
in the FORTRAN language for the next numerical scheme.

i’ji

2.3 Conclusion

After making a survey of the publications on symbolic and algebraic manipulation, the

following conclusions are drawn :

1. None of the papers applying SAM to engineering problems tried to get closed-form
solutions. They kept traditional methodology by increé.sing the terms of the
approximation function to get more accurate solutions. This is due to the difficulty in

solving generally partial differential equations or integral equations analytically.

2. The papers discussing the application of symbolic and algebraic manipulation on the
finite element analysis stop at the step of making a local stiffness matrix, local mass
matrix, etc. The same situation also occurred in finite difference analysis. This was
because

(a) The finite element and finite difference methods are themselves approximation
methods. The accuracy of results depends on many factors, not just on round-off
error or integration error which can be cured by symbolic and algebraic
manipulation. Aithough it was also one of the purposes to improve the accuracy of
the solution, the major consideration in applying symbolic and algebraic
manipulation was to help in the formulation of the tedious mathematical equations.

(b) In general engineering problems, the stiffness matrix in FEA and stencil coefficient
in FDA are huge in dimension. The limitation of memory space makes the execution
of FEA's (or FDA) job impossible by symbolic and algebraic manipulation.
Therefore it is necessary to be finished by numerical analysis.
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(c) Although most of the SAM systems also possess the capacity of numerical analysis,
the execution speed of numerical analysis in symbolic and algebraic manipulator is
slower in comparison to that in pure numerical analysis. The difference of
efficiencies between them is remarkable when the job is big. Therefore it is best not
to have it done completely in symbolic and algebraic manipulation. As the documents
showed, nobody did the whole FEA or FDA job in symbolic mode alone.
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CHAPTER 111

CAPABILITIES OF THE SYMBOLIC AND ALGEBRAIC MANIPULATORS

3.1 Introduction

The capabilities of the symbolic and algebraic manipulator are quite system dependent.
Roughly speaking, a system which is designed for general purpose usage usually possesses
the functions of differentiation, integration, matrix operation, polynomial manipulation, pattern
match, variable substitution and equation solver. Some systems, such as MACSYMA and
MATHEMATICA, have a lot of built-in mathematical functions which allow the users to get
the answers by just calling the appropriate command once. Others, like REDUCE, may need
users to write a short program to get the same answers.

This chapter will demonstrate the fundamental capabilities of the symbolic and algebraic
manipulators which are available at hand by solving examples of applied mechanics. Since
REDUCE is the oldest System available at The University of Michigan, most examples will be
demonstrated by using REDUCE. Of course, MACSYMA will be employed to help the
demonstration if it is necessary.

Unfortunately, REDUCE doesn't possess the graphic function, and the version of
MACSYMA being used in The University of Michigan also doesn't include the graphics
package, although it is available on the market. Therefore, the postprocessing of the results
from symbolic and al gebraic manipulators will be done by other graphics packages.

3.2  What can the symbolic and algebraic manipulators do ?

In this section, some of the most useful operations in symbolic and algebraic
manipulation are demonstrated in detail by examples. They are differentiation, integration,
matrix operation, algebraic equation solving, treatment of tri gonometric function, differential
equation solving, polynomial and rational operation, fortran code output, number system,
substitution and built-in functions. The strategies and particular techniques are also mentioned
at the place where they are necessary.
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3.2.1 Differentiation

All differentiations, without exception, can be done analytically by REDUCE. If it is
necessary, REDUCE knows how to apply the chain rule to solve problems. The powerful
capabilities of this analytical differentiation will probably replace traditional numerical
differentiation in many cases, such as the evaluations of the Jacobian and Hessian matrices
However, the wrong results may be obtained by careless or naive users. For instance, in
finding the first derivative of ¥* with respect to x. Two different solutions may be obtained as
follows :

1: on time;
Time: 134 ms

2: df(x**(x**x) x);
X

X 2
X +X*(LOG(X) *X + LOG(X)*X + 1)
X
Time: 383 ms
3. df(x**x**x x):
2
X
X *X*(2*LOG(X) + i3]
Time: 233 ms

Here the first solution is correct. How to Judge the correctness of the results is one of
the important tasks in symbolic manipulation. A sound background knowledge in the SAM and
problem-related fields is very helpful in checking them.

. . x .
In some cases, the unevaluated differentiation form of functions, such as 3~ is desired
to be retained throughout the computation. This also can be done as follows :

4: depend x.t;
Time: 84 ms

5: depend y,t;
Time: 8 ms

6: p:=a*x*y;
P:= A*X*Y
Time: 150 ms

7: df(p,1);

A*(DFEX,T)*Y + DF(Y,T)*X)
Time: 133 ms
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3.2.2 Integration

In REDUCE, all the integrations performed by the command INT are indefinite
integrations with the integration constants discarded. If the function is not integrable by
REDUCE (the closed-form solution may exist theoretically), the original form will be displayed
on the screen. The definite integration may be obtained by further substituting the upper and
lower limits into the results after the indefinite integration.

%A non-integrable case.
8: int(sqrt(ar2-xA2),x);

2 2
INT(SQRT(A - X ),X)
Time: 950 ms

%An integrable case.
9: int(1/(ar2+x42),x);

X
ATAN(---)

Time: 466 ms

In most cases, the non-integrable integrand will become integrable after appropriate
manipulation. This pre-treatment involves the technique of changing the integrating variables in
fundamental calculus. Sometimes the intelligent users can substantially extend the capabilities
of the symbolic and algebraic manipulator by suitably combining human intelligence with the
tireless and errorless advantages of computer. For example, if the x in command 8 is
substituted by a*cos(t), then dx=-a*sin(t)*dt and the integration of a’-x* with respect to x
will become the integration of a? *sinz( t)dt with respect to £, which is integrable by REDUCE.
After the integration is done, the original variable x may be substituted back to get the desired
expression in terms of x. The check may be done by skeptics by differentiating the resultant
expression to get the original integrand. The following three commands demonstrate these
procedures.

10: int(-a*2*(sin(t))A2,t);
2
A *(COS(T)*SIN(T) - T)

Time: 2134 ms
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11 sub(cos(t)=x/a,sin(t)=sqrt( l-x**2/a**2),t=acos(x/a),ws);

X 2 2 2
ACOS(---)*A - SQRT(A - X )*X
A

Time: 716 ms
12: df(ws,x);

2 2
SQRT(A -X)
Time: 450 ms

3.2.3 Matrix operation

Matrix operation is one of the powerful capabilities of symbolic and algebraic
manipulators. These include the addition and multiplication of matrices, multiplication of
matrices and scalars, inverting matrices, calculating the determinant of a square matrix, finding
the trace, computing the eigenvalues and associated eigenvectors exactly if they are available
and so forth.

3.2.3.1 Matrix multiplication

The three body rigid rotation 1-2-3 in dynamics is a good example of the utility of
matrix multiplication. In robotics, it is necessary to find the analytical form of final orientation
from which the rotation angles of each arm can be computed. The final direction cosine matrix
d is obtained from the product of three consecutive direction cosine matrices a, b, c.

%Declaring four matrices.
13: matrix a(3,3),b(3,3),¢(3,3),d(3,3);

%I nputting matrices.
14: a:=mat((1 ,0,0),(O,cos(ql),-sin(q1)),(O,sin(ql),cos(ql)));

A(lLl):=1
A(1,2):=0
A(13):=0
A2,1):=0

A(2,2) := COS(Q1)
A(2,3) :=-SIN(Q1)
AB,1):=0

A(3.2) := SIN(Q1)
A(3,3) := COS(Q1)
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Time: 700 ms

15: b:=mat((cos(q2),0,sin(q2)),(0,1,0),(-sin(q2),O,cos(q2)))$
Time: 367 ms

16: c:=mat((cos(q3),sin(q3),O),(-sin(q3),cos(q3),0),(0,0,l))$
Time: 383 ms

Zemultiplication of three matrices.

17: d:=a*b*c;

D(1,1) :=COS(Q2)*COS(Q3)

D(1,2) :=COS(Q2)*SIN(Q3)

D(1,3) :=SIN(Q2)

D(2,1) :=-(COS(Q1)*SIN(Q3)-COS(Q3)*SIN(Q1)*SIN(Q2))
D(2,2) :=COS(Ql)*COS(Q3)+SIN(Q1)*SIN(Q2)*SIN(Q3)
D(2,3) :=-COS(Q2)*SIN(Q1)

D(3,1) :=-(COS(Q1)*COS(Q3)*SIN(Q2)+SIN(Q1)*SIN(Q3))
D(3,2) :=-(COS(Q1)*SIN(Q2)*SIN(Q3)-COS(Q3)*SIN(Q1))
D(3,3) :=COS(Q1)*COS(Q2)

Time: 617 ms

The terminators $ in command lines 15 and 16 prohubit the printing of results and save
almost half of the time compared to command line 14 which uses the other terminator.

3.2.3.2 Matrix inversion

Unlike numerical analysis in which the time-consuming operation of matrix inversion is
to be avoided, to find the inverse of a matrix symbolically is one of the significant and simple
tasks in symbolic and algebraic manipulation. One important application of it is in solving a
system of linear equations. For example, the problem of f inding a curve to fit the given set of
data by the least square method results in solving a system of linear equations. The coefficient
matrix here is the Hilbert matrix which is usually used to investigate the phenomenon of round-
off error accumulation. REDUCE can solve this problem exactly. The numerical solution and
symbolic solution are tabulated in Table 3.1, 3.2, 3.3 for three different Hilbert matrix sizes.
As the tables show, the numerical solution is not capable of producing accurate results even for
the case of the 7*7 Hilbert matrix. The deviation between both solutions is also plotted in
Figure 3.1. The significance of symbolic and algebraic manipulation is evident.

8: matrix h(40,40),x(40,1)$

9: for i:=1:40 do for j:=1:40 do h(i,j):=1/(i+j-1)$
Time: 30917 ms

10: for i:=1:40 do x(1,1):=i$
Time: 583 ms

11: h:=(1/h);
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H(1,1) :=1600

H(1,2) :=-1279200

H(1,3) :=340267200

H(1,4) :=-45113759600
H(1,5) :=3573009760320
H(1,6) :=-187583012416800

H(40,39) :=-1141149866470104951399125616277 1200668 10096080000
H(40,40) := 58520505972825894943 5449033988266 7009282 5440000
Time: 1355067 ms

12: x:=h*x;

X(1,1) := -64000

X(2,1) := 102272040
X(3,1) := -40781023920
X(4,1) := 7204667408120

X(5,1) :=-712815447183840

X(6,1) := 44879235720719400
X(7,1) := -1948531047013671120
X(8,1) := 61638279321584754360
X(9,1) := -1478390066741437724160

X(10,1) := 27706961874232024704320
X(11,1) := -4153432059713600183 52000
X(12,1) := 5073605405648309638180800
X(13,1) := -51267503668234803803 526400
X(14,1) := 433831946060133824442926400
X(15,1) := -3105695134246771063279900800

X(33,1) := -275148980879869194392659362117120
X(34,1) := 129027970745724768036578024940720
X(35,1) := -49525830202172298308155472545440
X(36,1) := 15151287095628987186696245706000
X(37,1) := -35517346849186367154961 19886400
X(38,1) := 598923394712817307441549441200
X(39,1) := -6466223836027279866072651 1200
X(40,1) := 335637505665475542913 1776400

Time: 96000 ms
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X Exact REDUCE solution Gauss elimination solution
x(1) 125 124.7899166408321
X(2) -2880 -2875.997324887610
x(3) 14490 14472.49323423709
x(4) -24640 -24613.29019994230
x(5) 13230 13216.83350607823

Table 3.1 : Comparison of solution for 5*5 Hilbert matrix

X Exact REDUCE solution Gauss elimination solution
X 216 -204.4675087167038
X(2) 7350 7027.565254454758
x@3) -57120 -54968.63675793860
x(4) 166320 160780.3224850843
X(5) -201600 -195532.2818417542
X(6) 85932 83555.64156991533

Table 3.2 : Comparison of solution for 6*6 Hilbert matrix

X Exact REDUCE solution Gauss elimination solution
(D) 343 131.3201346851223
X(2) -16128 -7941.234641235595
x(3) 177660 100320.8278414759
x(4) -772800 -476154.4030660979
X(3) 1559250 1020735.514691367
X(6) 1463616 -1001760.776649569
X(7) 516516 365761.5297697352

Table 3.3 : Comparison of solution for 7*7 Hilbert matrix
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Figure 3.1 : Error between the solutions of REDUCE and Gauss elimination

3.3 Eigenvalues and Eigenvectors

To find the eigenvalues and eigenvectors for a matrix is another important task in the
application of symbolic and algebraic manipulation. Since to solve the eigenvalue problems
analytically for an arbitrary dimensional matrix is theoretically impossible, the following
examples only show the exact solutions for a 3 by 3 matrix.

21: matrix s(3,3)$
22: s:=mat((sXx,SXy,sXz),(SXy,syY,syz),(sXz,5Xy,szz))$
23: mateigen(s,eta);
3 2 2 2 2
{{ETA-ETA *SXX-ETA *SYY-ETA *SZZ+ETA*SXX*SYY+ETA*SXX*SZZ-ETA*SXY
2
-ETA*SXY*SYZ-ETA*SXZ +ETA*SYY*SZZ+SXX*SXY*SYZ-SXX*SYY*SZZ
2 2 2
-SXY *SXZ+SXY *SZZ-SXY*SXZ*SYZ+SXZ *SYY,

1,
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g T
2 2
ETA -ETA*SXX-ETA*SYY+SXX*SYY-SXY
ARBCOMPLEX(1)*(ETA*SYZ-SXX*SYZ+SXY *SXZ)
g 2

ETA -ETA*SXX-ETA*SYY+SXX*SYY-SXY

MAT(3,1):=ARBCOMPLEX(1)}}
Time: 1283 ms

24: s:=mat((5,1,0),(1,2,4),(0,4,3))$
Time: 284 ms

25: mateigen(s,eta);

3 2
{{ETA -10%ETA +14*ETA+53,
1:
4* ARBCOMPLEX(2)
MAT(1,1) := =mmemmmmmemeem e
2
ETA - 7*ETA +9

4*ARBCOMPLEX(2)*(ETA - 5)

V7N () R ———

ETA -7*ETA +9

MAT(@3,1) := ARBCOMPLEX(2)}}
Time: 666 ms

26: trace(s);
SXX +SYY +SZZ
Time: 100 ms

As the command lines 23 and 25 show, the solutions from REDUCE by calling
MATEIGEN contain three parts. They are

(a) Characteristic equation.
(b) The number of repetition roots. It's one in the above examples.

(c) Eigenvectors.
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If the eigenvalues are required, the characteristic equation needs to be solved in
addition. The equation solver command SOLVE which will be demonstrated later can meet this
requirement. The ARBCOMPLEX(1) which appeared 1n the eigenvectors is referred to as
"arbitrary complex constant". Examples 24 and 25 also show results from REDUCE by
substituting numbers into matrix S. The trace of the matrix is also evaluated by the command
TRACE as shown in example 26.

3.2.4 [Equation solver

REDUCE can solve the polynomial equation up to order three exactly. If the solution
includes the imaginary part, the "I* will show up to represent the imaginary symbol. The
following example solves the characteristic equation obtained above,

27: solve(ETA**3-10*ETA**2+14*ETA +53=0,eta);

23
{ETA=-((63*SQRT(229)*1-691*SQRT(3)) *SQRT(3)*1+(63*SQRT(229)*[-691*

2/3 13 13 1/6 2/3
SQRT(3)) -20%(63*SQRT(229)*1-691*SQRT(3)) *2 *3 -58%2 *SQRT(3)*

1/3 23 13 173 13 1/6
¥3  *[4+58%2 %3 J(6*(63*SQRT(229)*] - 691*SQRT(3)) *2 *3 ),

23
ETA=((63*SQRT(229)* - 691*SQRT(3)) *SQRT(3)*I - (63*SQRT(229)*1 - 691*

213 13 13 1/6 23
SQRT(3)) +20%(63*SQRT(229)*I-691*SQRT(3)) *2 *3  -58%2 *SQRT(3)*

1/3 23 13 13 13 /6
3 *I-58*2 *3 )N(6*(63*SQRT(229)*I - 691*SQRT(3)) *2 *3 )s

23 13
ETA=((63*SQRT(229)*I - 691*SQRT(3)) + 10*(63*SQRT(229)*] - 691*SQRT(3))

13 1/6 23 113 173 13 1/6
*¥2 %3 4+ 58%2 x3 )(3*(63*SQRT(229)*] - 691*SQRT(3)) *2 *3 )}
Time: 5717 ms

If the numerical mode NUMVAL, complex switch COMPLEX and FLOAT mode are
turned on, the numerical solution of three eigenvalues can be obtained in sixteen digits
precision by default. The imaginary parts in the following example are very small and are due
to the round-off errors.

28: solve(ETA**3 - 10*ETA**2 + 14*ETA + 53=0,eta);
{ETA=4.830759950611553d0 + 2.991124223331416d-7*1,
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ETA=-(1.6167630306368408d0 + 6.960060167347475d-8*),
ETA=6.786003556862447d0 + (-2.295118206596669d-7)*1}
Time: 1567 ms

REDUCE can solve systems of linear algebraic equations exactly. The limitation is
determined only by the memory capacity of the hardware system. The following example finds
the minimization of a quadratic function

Q=KkI*yIN2}+k2*y1*y2+k3*y2N 2 }+ k4*y2*y3+k5*y3N 2 }-k6*y3 subject to yl+y2=2

29: Q:=kl*y1**2+k2*y1*y2+k3*y2**2+k4*y2*y3+k5*y3**2-k6*y3+y4*(y1+y2-2)$
Time: 550 ms

30: a:=df(q,yl);
A =2*K1*Y1 + K2*Y2 + Y4
Time: 167 ms

31: b:=df(q,y2);
B = K2*Y1 + 2*K3*Y2 + K4*Y3 + Y4
Time: 167 ms

32: c:=df(q,y3);
C :=K4*Y2 + 2*K5*%*Y3 - K6
Time: 166 ms

33: d:=df(q,y4);
D=Y1+Y2-2
Time: 150 ms

34: solve({a=0,b=0,c=0,d=0},{y1,y2,y3,y4});

2
4¥K2*KS5 - 8¥K3*K5 + 2*K4 - K4*K6
I A T — ,
2
4¥KI*KS - 4*K2*KS5 + 4*K3*K5 - K4
| 8¥K1*KS5 - 4*K2*K5 - K4*K6
| E— —— :

4¥K1*K5 - 4¥K2*KS + 4¥K3*KS - K4
2%(2*K1*K4 - K1*¥K6 - K2¥K4 + K2*K6 - K3*K6)

Y B - e ,
2
4*K1*KS5 - 4*K2*KS5 + 4*K3*KS5 - K4
2 2
16¥K1*K3*K5-4*K1*K4 +2*K1*K4*K6-4¥*K2 *K5-K2*K4*K6
Y 4 = e }}
2

r4

4*K1*KS - 4*K2*KS + 4*K3*KS5 - K4
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Time: 1400 ms

After the substitution of y! to y4 into the quadratic function, the minimum is found as
follows :

35: q:=q;
2 2 2
Q:=(16*K1*K3*K5-4*K1*K4 +4*K1*K4*K6 -K1*K6 -4*¥K2 *K5-2*K2*K4*K6+

2 2

2
K2*K6 -K3*K6 Y(4*K1*K5-4%¥K2*K5+4*K3*K5-K4 )
Time: 267 ms

3.2.5 Treatment of the trigonometric function

REDUCE doesn't even know an equation as simple as sin (q)+c052(q) 1. However
REDUCE does possess the potential to learn it. Due to this powerful capability, the
trigonometric functions can be handled easily by just teaching REDUCE the operation rules.
For example, without teaching the operation rule of trigonometry, the determinant of direction
cosine matrix d in command 17 is as follows :

36: det(d);

2
COS(Ql) *COS(QZ) *COS(QB) +COS(Q1) *COS(QZ) *SIN(QS) +COS(Q1) *

COS(Q3) *SIN(Q2) +COS(Q1) *SIN(QZ) *S[N(Q3) +COS(Q2) *COS(Q3) *
SIN(QI) +COS(Q2) *SIN(QI) *SIN(Q3) +COS(Q3) *SIN(QI) *SIN(QZ) +

SIN(QI) *SIN(Q2) *SIN(Q3)
Time: 483 ms

After teaching REDUCE the appropnate operation rules, the solution becomes quite
simple. Note that the time consumption in command 38 is longer than that in command 36.
This is due to the extra work needed for simplification. It also reveals the phenomenon of
internal swells.

37: let cos(q1)**2+sin(ql)**2=1 cos(q2)**2+sin(q2)**2=l,cos(q3)**2+sin(q3)**2=l;
Time: 650 ms

38: det(d);
1
Time: 584 ms



3.2.6 Solving differential equation

REDUCE is unable to solve the differential equation directly, while MACSYMA does
possess this capability. The following example is a problem of beam deflection w(x) under
uniform load q [Figure 3.2]. The differential equation is of the form

2

dw
dx?

=s*w +r¥x(x -L) 3D
Where s and r ,in general, are the function of Young's modules, moment of inertial as

well as boundary conditions. In the case of small deflection with simple supported on both
end, the s becomes zero, and r=q/2EI

"
SEERRTTIRTINNT
—

Figure 3.2 : Beam under uniform load. The boundaries are not
specified to find general solution.

The (Cn) in the following examples is the MACSYMA prompt for inputting the
command and (Dn) is the solution given by MACSYMA.

"(C1) depends(w,x);
(D1) (W(X)]

(C2) diff(W,x,2)'S*W-I'*X*(X-l):O;
2
dw
(D2) -RX (X -L)+ -=mmmmemv -SW=0
2
dX

(C3) ode2(d2,w,x);
Is S positive, negative, or zero?
Ps
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2
SQRT(S) X -SQRT(S) X RSX-LRSX+2R
(D3)W = %K1 %E + %K2 %E - S —
2
S

Where the %K1 , %K2 are constants to be determined by boundary conditions. The
%E here is the symbol of exponential function.

Although the next example (no specific physical problem associated with it) is more
complex, it only takes 3.6 milliseconds in MACSYMA.

(C4) depends(y,x);
(D4) [Y(X)]

(C5) diff(y,x,2)+(2/x)*diff(y,x)-(2/x**2)*y( 1/x**2)*sin(log(x))=0;

dY
2 2---
dY dX 2Y SIN(LOG(X))
(D5) e R =0
2 X 2 2
dX X X
(C6) ode2(d2,y,x);
3 SIN(LOG(X)) + COS(L.OG(X)) K2
(D6) Y = e e + %K1 X + -------
10 2
X
(C7) time(d3);
Time:
(D7) [3.6d0]

3.2.7 Polynomial and rational operations

Polynomial and rational operations is one of the most important and useful functions in
symbolic and algebraic manipulation. There are two occasions in employing these functions.
First, in most cases the problems to be solved are not as simple as the above demonstrations.
Therefore it is necessary to manipulate the formulae into a machine manageable forms before
calling the appropriate REDUCE commands to solve them. Second, sometimes the solutions
are restricted to specific forms for particular usage. In order to get the appropriate forms, there
is no way to avoid employing this package. The capabilities of this package include the controls
of the expansion, factorization, and cancellation of common factors, determining the GCD of
two polynomials, obtaining the part of polynomial and rational functions, and so forth.
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%Turning off expansion switch.
39: off exp;

%Inputting p and q polynomials. The numerical common factors
%will be automatically factored out.
40: pi=(x-1)*(5*x-3)*¥*2¥(4*x+8)A3*(9*x-6);

2 3
P = 192*%(5*%X - 3) *(3*X - 2)*(X + 2) *(X - 1)

4l q:=(X-1)*(5*x-3)*(4*x+8)*(x+4);
Q:=4¥S*X -3)* (X +H*(X +2)*(X - 1)

%Getting greatest common divider of p and q.

42: ged(p,g);
A¥(5*¥X -3 (X +2)%(X - 1)

%Turning on expansion switch and checking p, q.
43: on exp;

44: p;
7 6 5 4 3 2
192*%(75%X +235%X -163*X -723*X +392*X +664*X -624*X +144)

45: q;
4 3 2
4*%(5*X +22*%X - 5%X - 46*%X + 24)

%Defining a fraction r.
46: ri=p/q;

7 6 5 4 3 2
R :=(48*%(75*X +235*X -163*X -723*X +392*X +664*X -624*X+144))/

4 3 2
(5*X +22*X -5*X -46*X+24)

%Tumning on the greatest common divider switch and rechecking r.
%The common factors have been cancelled as shown in command 47.
47: on ged;

48:r;
4 3 2
48*%(15%X +41*X - 10*X - 52*X + 24)

%Getting the denominator and numerator of fraction r.
49: den(r);
X+4
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50: num(r);

4 -3 2
4B*(15*X +41*X - 10*X - 52*X + 24)

%Getting the leading degree of numerator of fraction r.
51: deg(num(r),x);
4

%The numerator of r in command 49 also can be factored as the multiplications of each factors.
52: on ifactor;

53: factorize(num(r));
{22,223 X + 2,X + 2,3*X - 2 5%X - 3}

3.2.8 Fortran code output

REDUCE can automatically produce the fortran expression, natural style expression
(default), and REDUCE code. The fortran code can be made as a subroutine and be directly
input to the fortran main program. The natural style expression allows it to be looked as hand-
written form, while REDUCE code is useful in making a REDUCE subroutine for input into
the REDUCE main program. Since the results from REDUCE are generally very lengthy, the
functions of code-conversion make the switch from symbolic and algebraic manipulation to
numerical analysis smoother. This not only saves effort in symbolic and algebraic
manipulation, but also rules out all the possibilities of error introduced by hand typing. The
following examples will give a clearer understanding about these functions.

%Inputting the polynomial. The output forms are in natural style of human being writing.
54: pr=(a+b-c)**7;

7 6 6 5 2 5 52 4 3 4 2
P:= A +7*%A ¥B-T*A *C+21*A *B -42%A *B*C421*A *C +35*A *B -105*A *B *C+105*

4 2 4 3 3 4 3 3 3 2 2 3 3 3 4
A *B*C -35%A *C +35*A *B -140%A *B *C +210*A *B *C -140*A *B*C +35%A *C

2 5 2 4 23 2 2 2 3 2 4 2 5
+21*A *B -105*A *B *C +210*A *B *C -210*A *B *C +105*A *B*C -21*%A *C +7*

6 5 4 2 3 3 2 4 5 6
A*B -42*A*B *C+105%A*B *C -140*A*B *C +105*A*B *C 42*A*B*C +7*A*C

7 6 5 2 4 3 3 4 2 5 6 7
+B -7*B *C+21*B *C -35*B *C +35*B *C -21*B *C +7*B*C -C
Time: 1434 ms

% Turning on the fortran-code conversion switch.
55: on fort;



%Checkmg the output of fortran code.

Py
ANS=A**TLT ¥ AX*G*B-T X A¥¥G¥C+2] ¥A**S¥B*XD_42 ¥ A X% Sk
FC+ 21 XAXKSKC**2 435 ¥ A¥¥4*¥B**3_]()5, * A *¥¥4*B**2*xC4+105.
FAXKYRBRCX*D 35 X AKKYFCHX3 L35 X AXXJXBRXYQ |4 ¥ A*¥*3%B
KAIXCH210.¥A*¥J*¥BX*QXCX*D_[ 4 ¥ A**IXB*C**3 135 %A *%3
KCHHQL2] KAXXQXBRXS5 |5 ¥AXKDXBEXYXC+2]1(). ¥ A¥*¥DXBXX3*
KXD210.¥AX*QXBRRDRCH*T 4|05 KA XX QX BRCH*4. 0] XA X*¥2%(C
L XESLT RAXBR*G-42 ¥A*¥B¥*S¥C+105. *A*B*¥*4*C**2-140.*A *B
XEZACHX3L]0S. ¥AXB*¥2XCH*4-42 ¥ AXB*CH** 547 ¥ A ¥ CxxGLR**
. T-T¥B**6*¥C+21. ¥B¥*S5¥C**2.35 ¥*B**4*C**3 135 ¥BX*3x (%
L4421 ¥BX¥QXC*X 5T kRRCH*G C**7

Time: 850 ms

%Changing the number of continuation line in fortran code.
57: cardno!*:=10$

58: p;
ANS1=7*A*¥B**6-42 *A*B**5*¥C+]0S.*A*B**4*C**2.140.*A*B
. XXBHCH*3410S. ¥A¥B**¥Q*¥C**4-42 ¥ AXBXC** 547 ¥ A*C** G+ B**
LT T XB*¥*G*¥C+2] ¥B¥*S5*C**2.35 ¥B**¥4¥(C*%3 435 *B* k¥ (k%
. 4-2]1 ¥B¥¥2*¥C** 5,77 *B¥C**6.C**7
ANS=A**¥T74T ¥ A¥¥GX¥B.7 ¥A*¥¥G*¥C42] ¥ AXXSKBX%D_4D ¥ A ¥* 5%
CXCH2] FAXXRSKC**2435 ¥ A¥¥4*B**3_ |05 ¥ A ¥*4*B**2*C4+1085.
L KAXRLARBRCH*D.35 ¥ AKX CH*3435 K A*X3*xB**4 140 ¥ A**3*B
L KABXCH210. ¥ AX*I*¥BX* QX CH*D_ 140 ¥ A¥*IXBHC**3 435 % A ¥ %3
L C¥¥442 ] FAX*QXBXXS_ 105 ¥ A¥XQ*¥BX*4XC+2]() ¥ A ¥ ¥ ¥ B**3%xC
CXE2]0.XAXKXBRKDRCHXT L] (S KAXKDXBRCH¥Y D] XA KKDXC
. ¥*5LANSI
T1me 1034 ms

%Turning off fortran-code conversion switch.
59: off fort;

%Turning off the 'natural style' function switch.
60: off nat;

%Checking the output of REDUCE code.

61: p:=p;

P = A*¥*¥74T7*A**G*¥B-T* A **

O*CH21 ¥ A*¥S¥B**D 42X A¥XS¥BXC2 | ¥A¥XS*C** 24355 A XX 4*¥ B**3_] 0S*
AXXA*¥B¥RDECL]0S*A**4*B*C**2-35¥ A ¥ ¥4+ C**3435% A *¥3*xB* %4 | 40* A
**3*B**3*C+210*A**3*B**2*C**2_140*A**3*B*C**3+35*A**3*C**4+
2I*¥AX*2¥B**5.[OS*A**¥ Q¥ B¥ ¥ 4*XCH2 | Q¥ AX¥DXB**3XC**D_ D |k A**2* B
KEQECHX3 4 |OS*A**QBXCH¥Y-2 | ¥ A ¥ QX CH* S THAXBX¥*G 42X AXB** 5% C
+105*A*B**4¥C**2-140% AXB**3*¥C**34+]05* A *B**2*C**4-42* AXB*C**5
+T¥AXCX¥¥G+BX¥*¥T-TXB**G*C42 | ¥B** 5¥ C**2-35% B**4*C**3435¥B**3*(C
**4_21*B**z*c**5+7*B*C**6_C**7$

Time: 816 ms
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3.29

Number system

In addition to symbolic manipulation, the symbolic and algebraic manipulators can also

do numerical analysis. There are three ways to treat numbers in REDUCE. They are

(a) Integer --- In general, there is no practical limit on the number of digits. For example,

the value of 2!9% gives 255 digits. It only takes 383 milliseconds.

62: A:=2*%%1000;

A:=107150860718626732094842504906000181056140481170553360744375038837
0351051124936122493 198378815695127594672917553 1468251871452856923 1
404359845775985748039345677748242309854210746050623711418771821530
46474983581941267398767559165543946077062914571 1

Time: 383 ms

(b) Fraction number --- Numbers that aren't integers and operated with symbols (or

(c)

numbers) are represented by default by the quotient of two integers with message(s)
telling users the conversion.
63: a:=0.999*b*c;

*%* 0.999 represented by 999/1000
999*B*C

1000
Time: 200 ms

64: a:=0.999*0.5,
*x* 0.999 represented by 999/1000
*%% 0.5 represented by 1/2

999

A=
2000
Time: 217 ms

Real number --- It is also possible to ask REDUCE to work the floating point
approximations to numbers with arbitrary precision with specified numbers of digit.

%Turning on the numerical mode.
65: on numval;

%Turning on the floating system switch.
66: on float;

67: pi;

3.141592653589793d0

Time: 150 ms

68: on bigfloat;

*** Domain mode FLOAT changed to BIGFLOAT
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% Specified 50 digits.
69: precision 50$

70: pi;
3.141 59265 35897 93238 46264 33832 79502 88419 71693 993751
Time: 217 ms

3.2.10 Substitution

There are two substitution functions in REDUCE. One is for local substitution, and the
other is for global substitution. The difference can be revealed in the following examples.

%Defining a function f.

T1: [:=6. ¥ A*¥*2*R 1 **2*U2-3. *ATAN(U1/A)*A**2*
RI*R2*¥U1-9.*ATAN(U1/A)*A**2*R1*R2*U2+3.*ATAN(U1/A)*A
*¥*k2¥R2*¥*¥2*U1+3. *ATAN(UI/A)*A**¥2*R2**2*J2-2 * ATAN(U 1/
A)*R1*¥*2*¥U1**3+6.*ATAN(UI/A)*R1**2*U 1 **2* 2%

Time: 1234 ms

%making a local substitution and calling it as B.
72: b:=sub(atan(ul/a)=k,f);

2 2 2 2 2
B :=-(3*A *K*R1*R2*U14+9*%A *K*R1*R2*U2-3*A *K*R2 *U1-3*A *K*
2 2 2 2 3 2 2
R2 *U2 - 6¥A *R1 *U2 + 2*K*R1 *Ul - 6*K*R1 *Ul *U2)
Time: 433 ms

%Checking the original function f after the local substitution. [t's unchanged.

73: f;

Ul 2 : Ul 2 ur 2 2
-(3*ATAN(----)*A *R1*R2*U1+9*ATAN(----)*A *R1*R2*U2-3* ATAN(----)*A *R2 *U1
A A A
ur 2 2 Ul 2 3 ur 2 2
-3*ATAN(----)*A *R2 *U2+2*ATAN(----)*R1 *Ul - 6*ATAN(----)*R1 *U1 *U2

A A A
2 2
- 6¥A *R1 *U2)
Time: 367 ms

%Making global substitution.
74: let atan(ul/a)=g;
Time: 133 ms

%The original function f has been changed.
75 f;
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2 2 2 2 2 2
-(3*A *G*R1*R2*U1+9*A *G*R1*R2*U2-3*A *G*R2 *Ul-3*A *G*R2 *U2

2 2 2 3 2 2
- 6¥A *R1 *U2 + 2*G*R1 *Ul - 6*G*R] *Ul *U2)
Time: 283 ms

3.2.11 Built-in functions

The built-in functions are quite system dependent. Since REDUCE is desi gned for
general purpose usage, there are not many built-in functions. However they can be obtained by
suitably combined commands of REDUCE. On the contrary, MACSYMA has many built-in
functions which allow users to simply call commands once to get the solution. Some of these
MACSYMA functions are shown in the following paragraphs.

(a) Limit evaluation --- If it is necessary, the function LIMIT in MACSYMA will
automatically apply L'Hospital's rule to evaluate the formulae.

(C8)limit(sin(x)/x,x,O,plus);
(D8) : 1

(C9) time(d8);

Time:

(D9) [2.116d0]

(C10) limit((6*x*2+3*x-4)/(x-l),x,l,plus);
(D10) INF

(C11) limit((1-x)**(1/x),x,0);
-1

(D11) %BE
(C12) time(d11);

Time:

(D12) [2.75d0]

(b) Laplace transformation --- The LAPLACE command in MACSYMA can transform the
functions in physical domain, such as EXP, LOG, SIN, COS, SINH, COSH, DELTA
and EREF, into the s domain. In addition, it also can transform a differential equation
into algebraic equation. The command for inverse of Laplace transform is also
available.

(C13) laplace(1/sqrt(t),t,s);
SQRT(%PI)

(D13) e
SQRT(S)



(C14) time(d13);
Time:
(D14) [0.05d0]

(C15)laplace(((c-b)*exp(a*t)+(a-c)*exp(b*t)+(b-c)*exp(c*t))/((a-b)*(b-c)*(c-a)).t,s);

(D15) e aanaann
(A-B)(B-C)(C-A)

(C16) time(d9),

Time:

(D16) [0.384d0]

(C17) laplace(sin(a*t)-a*t*cos(a*t),t,s);

2
A 2S 1

(D17) e Y )

2 2 2 22 2 2

S +A S+A) S +A
(C18) time(d17);
Time:
(D18) [0.233d0]

%lnverting the Laplace transform.
(C19) ilt((s+6)/(sA2+4*s+12),5,1);

2T 2 SIN(2 SQRT(2) T)

(D19) DE ( - + COS(2 SQRT(2) T))
SQRT(2)

(C20) time(d4);

Time:

(D20) [0.933d0]

%Transforming a differential equation into algebraic equation.
(C21) laplace(diff(y(x),x,2)-3*diff(y(x),x)+2*y(x)=0,x,s);

!
d !
(D21) - - (Y(X)) ! -3(SLAPLACE(Y(X),X,S)-Y(0))
dX !
'X=0

2
+S LAPLACE(Y(X),X,S)+2 LAPLACE(Y(X),X,S)-Y(0) S=0

(C22) time(d21);
Time:
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(D22) {0.15d0]
(C23) laplace(diff(y(x),x,2)+wA2*y(x)-b*sin(w*x)=0,x,s);

!

d ! 2 2
(D23)- ---(Y(X)) ! +W LAPLACE(Y(X).X.,S)+S LAPLACE(Y(X),X.S)
dX !
1X=0
BW
R —— -Y(O)S=0
2 2
W +8S
(C24) time(d23);
Time:
(D24) [0.217d0]

(c) Series expansion --- The MACSYMA version in University of Michigan provides the
Taylor series and power series expansion capabilities. Although the function of Fourier
series expansion is available on the market, it is not available here.

(C25) taylor(%e”x,[x,0,71);

2 3 4 5 6 7
X X X X X X

(D25)T/ 1+ X+ -4 oot oe b em e + -omeee- +...
2 6 24 120 720 5040

(C26) time(d25);

Time:

(D26) {0.567d0]

(C27) powerseries(%e*x,x,0);
INF

=== i1l

\ X
(D27) > emeee
/ In
11=0
(C28) time(d27);
Time:
(D29) [0.45d0}
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CHAPTER 1V

APPLICATION OF SYMBOLIC AND ALGEBRAIC MANIPULATION TO
AUTOMATIC PROBLEM FORMULATION

4.1 Introduction

One of the most important advantages gained from symbolic and algebraic manipulation
is to automatically formulate lengthy mathematical equations without making any errors.
Modern scientists and engineers are continually being challenged with more and more
complicated formulas. With the aid of symbolic and algebraic manipulators, most problems can
be treated easily and correctly. This chapter will demonstrate SiX automatic formulation
examples done by symbolic and algebraic manipulation. They are :

1. The derivation of equations of motion in dynamics.

2. Tensor formulation for the shell problem.

3. The approximation to a function by Fourier series.

4. The formulation template for the iteration method in nonlinear numerical analysis.

5. Finite element stiffness matrix and mass matrix construction for 6-node triangular
element in a heat transfer problem.

6. Finite element stiffness matrix construction for 4-node isoparametrically quadrilateral
element in a plane elasticity problem.

Of course, the use of symbolic and algebraic manipulators as tools to automatically
formulate mathematical equations can be extended to any fields. Although the methodologies
are dependent on the problem to be solved, the basic commands used in programming are
similar.
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4.2 Derivation of equation of motion by SAM
4.2.1 Introduction

The derivation of equations of motion by the Lagrange method for the system shown in
Figure 4.1 involves finding kinetic energy T, potential energy V, and therefore the Lagrangian
L.

Figure 4.1 : Dynamic system for demonstration of symbolic
and algebraic manipulation

The Lagrangian then is partially differentiated with respect to both generalized
coordinates and the rate of generalized coordinates. The equations of motion will be obtained
after taking the time derivatives to appropriate terms and assembling the necessary terms.
Mathematically, the Lagrange equations are expressed in the form of

d oL, JL
=) - =0 4.1
&t (6q,) 9, D

where L is the Lagrangian and is defined as the difference between kinetic energy T and
potential energy V.

. . .2
T = sM(X +76)" + M (r6)* + 116 (4.2)
V =-Mgr(l-cosf)- M,g(r-rcos8 + xsin )+ Lk (rg)* (4.3)

4.2.2 REDUCE program and solution

1: on time;
Time: 83 ms
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%declaring theta and x as a function of time.
2: depend theta,time;
Time: 67 ms

3: depend x,time;
Time: 50 ms

%Calculating the total kinetic energy of system.
% The velocity v of body 2 need be evaluated later.
4: te:=(1/2)*i0*(df(theta,time))**2+(1/2)*m [¥r**2*(df(theta,time)) **2+(1/2)*m2*v**2.

2 2 2 2
DHTHETA,TIME) *10 + DF(THETA,TIME) *R *M1 + M2*V
TE = e --

2

Time: 500 ms

%Calculating the position vector of body 2.

s p:=(r*cos(theta)-x*sin(theta))*j+(r*sin(theta)+x*cos(theta))*i;

P:=COS(T HEI‘A)"‘I*X+COS(THETA)*J*R+SIN(THET A)*I*R-SIN(THETA)*J*X
Time: 333 ms

%The velocity vectors is then obtained by taking the derivative of

Pothe position vector with respect to time,

6: dp:=df(p,time);

DP := COS(THETA)*DRTHETA,T IME)*I*R-COS(THETA)* DF(THETA,
TIME)"J*X+COS(TI-EE’I‘A)*DF(X,TIME)*I-DF(THEI’A,TIME)*
SINCTHETA) "‘I*X-DF(’IHEI‘A,TIME)*SIN(THETA)*J*R-DF(X,TIME)
*SIN(THETA)*J

Time: 234 ms

%Getting the magnitude square of velocity of body 2.
7 v**2:=lcof(dp,i)**2+leof(dp,j)**2;

2 2 2 2 2 2
V :=COS(THETA) *DFK(THETA, TIME) *R +COS(THETA) *DFTHETA,TIME)

2 2 2
*X +2*COS(THETA) *DF(THETA ,TIMEy*DF(X, TIME)*R+COS(THETA) *

2 2 2 2 2
DF(X,TIME) +DF(THETA,TIME) *SIN(THET A) *R +DF(THETA TIME) ¥

2 2 2
SIN(THETA) *X +2*DF(T HETA TIMEy*DF(X, TIME)*SIN(THETA) *R+
2 2

DF(X,TIME) *SIN(THETA)
Time: 650 ms

% Teaching REDUCE the trigonometric rule for simplification of %formulae.
8: let (cos(theta))**2+(sin(theta))**2=1;
Time: 150 ms



%lnputting the potential energy of system.
9. ve:=-m1*g*r*(1-cos(theta))-m2* g*(r*( 1-cos(theta))+x*sin(theta))+( 172)*k*(r*theta)**2;
VE := (2*COS(THETA)*G*R*M1+2*COS(THET A)*G*R*M2-2*SIN(THETA)

2

2
*G*M2*X- 2¥G*R*M1 - 2*G*R*M?2 + K*R *THETA )2
Time: 483 ms
%calculating the Lagrangian.
10: la:=te-ve;

LA := -(2*COS(THETA)*G*R*M1+2*COS(THETA )*G*R*M2-DF(THET A,
2 2 2 2 2

TIME) *I0 - DF(THETA,TIME) *R *M1 - DFRTHETA,TIME) *R
2 2
*M2 - DK(THETA,TIME) *M2*X -2*DF(THET A, TIME)*DF(X,TIME)
2
*R*M2 - DF(X,TIME) *M2 -2*SIN(THETA )*G*M2*X-2*G*R*M] -
2 2

2*G*R*M2+K*R *THETA )/2
Time: 617 ms

%Deriving the equation of motion for theta coordinate without
Yoany simplification.

11: el:=df(df(la,df(theta,time)),time)-df(la,theta):

El:= -(COS(THETA)*G*M2*X+DFTHETA,THETA TIME)*DF(THETA,

2
TIME) *I0+DFTHETA,THET A, TIME)*DF(THETA, TIME)*R *M1

2
+DF(THETA , THETA, TIME)*DF(THETA, TIME)*R *M2 +DF(THETA,
2
THETA,TIME)*DF(THETA,TIME)*M2*X +DK(THETA,THETA,TIME)
2

*DF(X,TIME)*R*M2-DF(THET A, TIME,2)*10-DF(T HETA, TIME,2)*R
2 2
*M1-DF(THETA,TIME,2)*R *M2-DF(THET A, TIME,2)*M2*X -2*

DKT HETA,TIME)*DF(X,TIME)*M2*X-DF(X,TIME,2)*R* M2 +
. 2
SIN(THETA) *G*R*M1+SIN(THETA )*G*R*M2-K*R *THETA)
Time: 783 ms

%Deriving the equation of motion for x coordinate without simplification.
12: e2:=df(df(la,df(x,time)),time)-df(1a,x)+f;
2
E2 := DF(THETA, TIME,2)*R*M2-DF(THET A, TIME) *M2*X-DF(THETA,
TIME) *DF(X,TIME,X)*R*M2-DF(X,TIME,X)*DF(X, TIME)*M?2 +
DF(X,TIME,2)*M2 - SIN(THETA)*G*M2+F
Time: 483 ms

%Teaching REDUCE the 2nd derivative of theta w/t theta and time.is null, and so does x.
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13: let df(theta,time,theta)=0,df(x,x,time):O,df(theta,theta,time)=0,df(x,time,x)=0;
Time: 350 ms

%turning off the automatic expansion switch.
14: off exp;
Time: 50 ms

%
JoStarting polynomial manipulation to simplify the equations of motion.
(2

%Getting the coefficient of angular acceleration term.
15: al:=Icof(el,df(theta,time,2));

2 2
Al =M1 + M2)*R + 10 + M2*X
Time: 617 ms

%Getting the coefficient of sin(theta).
16: a2:=Icof(el,sin(theta));

A2 := - (M1 + M2)*G*R

Time: 550 ms

%Getting the leftover after taking off the above two terms.
17: a3:=el-al*df(theta,time,2)-a2*sin(theta);
A3 :=-(COS(THETA)*G*M2*X-2*DF(THET A, TIME)*DF(X, TIME)*M2* X
2
-DF(X, TIME,2)*R*M2-K*R *THETA)
Time: 533 ms

%Rearranging the equation of motion for theta coordinate.
%The results are simpler than those of in command 11.
18: el:=al*df(theta,time,2)+a2*sin(theta)+a3;

2 2

El := (M1+M2)*R +I0+M2*X )*DF(THETA,TIME,Z)-(COS(THETA)*G*MZ*
. 2
X-2*DF(THETA,TIME)*DF(X,TIME)*M2*X-DF(X,TIME,2)*R*M2-K*R
*THETA)-(M1+M2)*SIN(THETA)*G*R
Time: 400 ms

%Getting the coefficient of x acceleration term.

19: cl:=lcof(e2,df(x,time,2));

Cl.=M2

Time: 350 ms

%Getting the coefficient of angular acceleration term.
20: c2:=lcof(e2,df(theta,time,2));

C2 :=R*M2

Time: 333 ms

%Getting the leftover terms by removing the above two terms.
21: c3:=e2-c1*df(x,time,2)-c2*df(theta,time,2);

2
C3 := - (DF(THETA,TIME) *M2*X + SIN(THETA)*G*M2 - F)
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Time: 350 ms

Yoequation of motion for x coordinate.
22: e2:=c1*df(x,time,2)+c2*df(theta,time,2)+c3;
2

E2 := -(DF(THETA,TIME) *M2*X+SIN(THETA)*G*M2-F)-
DFTHETA,TIME,2)*R*M2 - DF(X,TIME,2)*M2)
Time: 317 ms

23: bye;

The examples shown above are the demonstration of obtaining the left hand side
formulae of equation (4.1). The equations of motion of system can be simply done by setting
the results of command 18 and 22 equal to zero. As the system is complex, the analytical
derivations of equations of motion by hand will become tedious and prone to error. For the
cases of complex systems, The application of symbolic and algebraic manipulation will be
more significant.

4.3 Automatic tensor formulation for shell problem
4.3.1 Preliminary formulation

Tensors are convenient mathematical entities for concisely describing physical
situations, that are independent of coordinate transformations. Although the benefits gained by
employing tensor notation are quite significant in the related fields, the expressions of tensor
formula often rise to errors. Fortunately, this difficulty can be avoided by the use of symbolic
and algebraic manipulation. This advantage will be demonstrated by formulating the thin shell
problem in tensor form and using SAM to expand the resulting tensor equations. For the sake
of convenience, the Latin indices will be referred for the range 1, 2, 3 and the Greek indices are
in the range of 1, 2 in the following paragraph without special stress.

On the formulation of the thin shell problem, the only necessary inputs are three
parametric equations f l(ul,uz) of the shell middle surface. Based on parametric equations, the
covariant metric tensor a,p and its determinant are calculated

i of  of
aaﬂ-faf’p-—éuLa-a% (4.4)
a = det (aaﬁ) (4.5)

The contravariant metric tensor is therefore given by
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u =const.

Figure 4.2 : Pictorically vector notations of shell

af

a’ = cofactor (aw Ya (4.6)

The first and second kind of Christoffel symbols for the surface are defined as follows
respectively :

[aB.y 1= a, ,+a, ,~a, ) | (4.7)

a
{ﬂ Y}-%ad(aﬁ"rJraw.ﬁ_aﬁu) (4.8)

The covariant differentiations of a covariant vector (the 1st order tensor) and the 2nd order
tensor are therefore calculated

Y
A‘_C-D,Aﬁ-Aﬁ'a—{p a}A, (4.9)
A D_A 6 A 6 A 4.10
pr.«” Za py'Aﬂrn"{pa} |y a 8 (4.10)

When the above formulations are done, the curvature tensor and its determinant are then
computed by the formulae of



dy=X'f, (4.11)
d = det(d,) (4.12)

Where the X! are the unit normal vectors of the shell middle surface [see Figure 4.2] and are
equal to

i - Y
X =a'% o 1S 2 (4.13)
Where €ijk is the generalized Kronecker delta.

The strain tensor is defined as half of the difference between the deformed metric tensor
and undeformed metric tensor.

E, =3, -a,) (4.14)
Where the asterisk superscript is denoted as deformed state. The a* g is defined as
. - Y
ag,=a, +p, *Pp *PalPy + 4.4, (4.15)

The generalized two-dimensional displacement gradient p, and rotation ¢ are represented as
Pg =Dav, - d w (4.16)

qa=d v’ +w, (4.17)

Where the v, are the in-plane displacements and w is the out of plane displacement of
the middle surface of the shell. Similarly the bending tensor is equal to the difference between
the deformed curvature tensor and undeformed curvature tensor.

Kqﬂ-daﬂ—d (4.18)

aff

x
The deformed curvature tensor d af 18 expressed as

12

. a Y
dg=(30) T +py+ ®la)d,, +D,yqa+dypa)

- @+ 7" q,p, ) (D, pop ~d,,q.)]

Where & =det(p aﬁ)

The constitutive equations for isotropically elastic and thin shell are
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N7 - l—@;?[(l- VIE® +w?E]] (4.19)
Eh3 af B 1!
b - I-Z—d—:v_z)[(l— V)K + va Kyl (420)

af
Where the Young's modules E and strain tensor £~ shouldn't be confused here. The
final equilibrium equations are then

D.NT +24]D,M" +M" D’ +F* -0 (4.21)
of Y af aff
DD ,M% -dd\M% -d N* P -0 (4.22)

Where the FP and P are the external forces applied in the in-plane and out-plane directions,
respectively.

4.3.2 REDUCE program and resuitant expressions

The REDUCE program shown below is based on the above formulation methodology.
The explanations of the program are also included to facilitate an understanding where it is
necessary. The resultant expressions are too huge to be included here and are available in
reference [17].
ARRAY X(3),C1(2,2,2),C2(2,2,2);

OPERATOR U,V,WF;
MATRIX A(2,2),CONTRA(2,2),D(2,2);

%
% INPUTTING SURFACE PARAMETRIC FUNCTIONS
%

X(1):=U(1);
X(2):=U(2);
X(3):=CONSTANT;

%

% CALCULATING COVARIANT METRIC TENSOR & ITS DETERMINANT
T

(%

FOR M:=1:2 DO FOR N:=1:2 DO .
A(M,N):=FOR I:=1:3 SUM DF(X(I),U(M))*DF(X(I),U(N)):
DETA:=DET(A);

DEPEND W,U(1),U(2);

FOR I:=1:2 DO DEPEND V(I),U(1),U(2);

%
%CALCULATING CONTRAVARIANT METRIC TENSOR COMPONENT

0

60



FOR L:=1:2 DO FOR M:=1:2 DO

IF L=1 and M=1 THEN CONTRA(L,M):=A(2,2)/DETA
ELSE IF L NEQ M THEN CONTRA(L ,M):=-A(M,L)/DETA
ELSE CONTRA(L,M):=A(1,1)/DETA;

%
%CALCULATING THE 1ST CHRISTOLFFEL SYMBOL
%o

FOR L:=1:2 DO FOR M:=1:2 DO FOR N:=1:2 DO
Cl(L,M,N)::(1/2)*(DF(A(L,N),U(M))+DF(A(M,N),U(L))-DF(A(L,M),U(N)));

%
%CALCULATING THE 2ND CHRISTOLFFEL SYMBOL. (SEE EQ. 4.6)
% —

FOR L:=1:2 DO FOR M:=1:2 DO FOR N:=1:2 DO
C2(L,M,N):=FOR I:=1:2 SUM A(L,)*CI(M,N,]);

%
%SUBROUTINE FOR CALCULATING THE COVARIANT DERIVATIVE
%FOR THE 1ST ORDER TENSOR

%

PROCEDURE COVD(L,VAR(M));
DF(VAR(M),U(L))-(FOR I:=1:2 SUM C2(I,L M)*VAR(I)):

%
%SUBROUTINE FOR CALCULATINE THE COVARIANT DERIVATIVE
%FOR THE 2ND ORDER TENSOR

%

PROCEDURE COVD2(L,FUN(M,N));
DF(FUN(M,N),U(L))-(FOR I:=1:2 SUM C2(I,L,M)*FUN(I,N))
-(FOR I:=1:2 SUM C2(I,L,N)*FUN(M,]));

MATRIX E(2,2),K(2,2),P(2,2),FF(2,3),XX(1,3);

% =
%CALCULATING RELATIVE ALTERNATE TENSOR

%ALSO CALLED AS GENERALIZED KRONECKER DELTA
%

PROCEDURE EE(1,J K);
IF I=J OR J=K OR K=I THEN 0
ELSEIF
(I=1 AND J=2 AND K=3)
OR (I=3 AND J=1 AND K=2)
OR (I=2 AND J=3 AND K=1)
THEN 1
ELSE -1;

%
%CALCULATING THE CURVATURE TENSOR & ITS DETERMINANT
% —
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FOR I:=1:2 DO FOR J:=1:3 DO
FE(1,J):=DF(X(J),U(1));
FOR I:=1:3 DO

XX(1,1):=(1/SQRT(DETA))*(FOR J:=1:3 SUM

(FOR K:=1:3 SUM EE(l,J K)*FF(1,J)*FF(2,K))):

FOR I:=1:2 DO FOR J:=1:2 DO

D(1,J):=FOR I1:=1:3 SUM XX(1,11)*DF(FF(1,11),U(J)):
DETD:=DET(D);

%

% CALCULATING THE GENERIZED DISPLACEMENT TENSOR
%

FOR L:=1:2 DO FOR M:=1:2 DO
P(LM):=DF(V(M),U(L))-(FOR L:=1:2 SUM C2(I,L,M)*V(1))-D(L,M)*W;

%
%CALCULATING THE ROTATION TENSOR (SEE EQ. 4.17)
%

ARRAY Q(2);
FOR M:=1:2 DO
Q(M):=DF(W,U(M))+(FOR I:=1:2 SUM D(M,I)*(FOR J:=1:2 SUM CONTRA(LH*V(IH);

%
%DERIVING THE STRAIN TENSOR
%

FOR I:=1:2 DO FOR J:=1:2 DO

E(1,J):=(172)*(P(L,)+P(.I)

+(FOR 11:=1:2 SUM (FOR J1:=1:2 SUM CONTRA(I1,J1)*P(1,J1))* PJLIN)+QD)*Q));
OFF PERIOD;

ON FORT;

OFF PERIOD;

FOR :=1:2 DO FOR J:=1:2 DO

WRITE " E("L""J,"="E(J);

%
9%CALCULATING THE ABSOLUTE 2-D ALTERNATE TENSOR
%

PROCEDURE EPS(L,M);

IF L=1 AND M=2 THEN SQRT(DETA)

ELSE IF L=2 AND M=1 THEN -SQRT(DETA)
ELSE 0;

%o

%CALCULATE CONTRAVARIANT ABSOLUTE 2-D ALTERNATE TENSOR
% =

PROCEDURE CEPS(L,M);
IF L=1 AND M=2 THEN I/SQRT(DETA)
ELSE IF L=2 AND M=1 THEN -1/SQRT(DETA)
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ELSE O;

%
%CALCULATING THE BENDING TENSOR
%

FOR [:=1:2 DO FOR J:=1:2 DO
<<K(I,J):=SQRT(DETA/AD)*((1+(FOR L:=1:2 SUM CONTRA(L,L)*P(L,L))
+DET(P)/DETA)*(D(1,))+DF(Q(I),U(J))
-(FOR I11:=1:2 SUM C2(I11,3,)*Q(I1))
+(FOR L:=1:2 SUM (FOR M:=1:2 SUM CONTRA(L,M)*D(J,M))*P(I,L)))
-(FOR L:=1:2 SUM ((FOR M:=1:2 SUM CONTRA(L,M)*Q(M))
+(FOR N:=1:2 SUM CEPS(L,N)*(FOR S:=1:2 SUM
(FOR R:=1:2 SUM CEPS(R,S)*Q(R))*P(S,N))))*(DF(P(I,L),U(J))
-(FOR 12:=1:2 SUM C2(12,J,)*P(12,L))
-(FOR I12:=1:2 SUM C2(12,J,L))
*P(1,12))-D(J,L)*Q(1))))-D(1,J),
WRITE " K".i,""5,.M="K{,J)>>;
DEPEND AD,U(1),U(2);
RAD:=DET(A+2*E)$
WRITE" AD=".RAD;

%
%DERIVING THE CONSTITUTIVE EQUATIONS

%

MATRIX N(2,2),M(2,2);
FOR I:=1:2 DO FOR J:=1:2 DO

<<N(1,J):=(YE/(1-VV**2))*((1-VV)*(FOR L:=1:2 SUM CONTRA(L,I)*
(FOR I11:=1:2 SUM CONTRA(I1,J)*E(L,11)))+VV*CONTRA(L J)*
(FOR L:=1:2 SUM CONTRA(L,L)*E(L,L)));

Ofpemmmmmmmmm e —
%EFFECTIVE MOMENT TENSOR

M(1,J):=(Y EXH**3/(12*(1-VV**2)))*((1-VV)
*(FOR L:=1:2 SUM CONTRA(L.1)*
(FOR 11:=1:2 SUM CONTRA(I 1 J)*K(L,11)))
+VV*CONTRA(L,))*(FOR L:=1:2
SUM A(L,L)*K(L,L)))>>:

%
%WRITING-OUT EXPRESSIONS OF STRESS AND MOMENT TENSOR
%o

FOR I:=1:2 DO FOR J:=1:2 DO
WRITE " N(", L, "1, "=",N(L,]);
FOR I:=1:2 DO FOR J:=1:2 DO
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WRITE " M(H’I’",“,J,”)zn’M(I’J);

70
%DERIVING THE EQUILIBRIUM EQUATIONS

%
ARRAY M1(2),N1(2);
FORI:=1:2 DO

M1(I):=FOR J:=1:2 SUM
(DF(M(L,J),U(J))+(FOR I1:=1:2 SUM C2(L,11,J)*M(I1,]))
+(FOR I1:=1:2 SUM C2(J,11,)*M(1,11)));
MM:=FOR [:=1:2 SUM
(DFEM1(D),U(1)+(FOR I1:=1:2 SUM C2(1,I11,[)*M1(11)));
BEQ:=MM-(FOR 11:=1:2 SUM
(FOR [2:=1:2 SUM D(I1,12)*(FOR 13:=1:2 SUM
CONTRA(I2,I3)*(FOR 14:=1:2 SUM D(14,13)*M(11,14)))))
-(FOR I1:=1:2 SUM
(FOR 12:=1:2 SUM D(11,12)*N(11,12)))-PP;
FOR I:=1:2 DO
N1(I):=FOR J:=1:2 SUM
DE(N(L,J),U(J))+(FOR 11:=1:2 SUM C2(I,I1,J)*N(11,J))
+(FOR I1:=1:2 SUM C2(J,I1,J)*N(1,11))
+2*(FOR [1:=1:2 SUM CONTRA(I,I1)*
(FOR 12:=1:2 SUM D(12,11)*(DF(M(12,J),U(J))
+(FOR [3:=1:2 SUM C2(12,13,))*M(13,)))
+(FOR 13:=1:2 SUM C2(J,13,7)*M(12,13)))))-
(FOR 11:=1:2 SUM M(11,))
*(FOR 12:=1:2 SUM D(I1,12)*(DF(CONTRA(I,12),U(J))
+(FOR [3:=1:2 SUM C2(I,I3,J)* CONTRA(I3,12))
+(FOR [3:=1:2 SUM C2(12,13,J)*CONTRA(1,13))))
+(FOR 12:=1:2 SUM CONTRA(11,12)*(DF(D(11,12),U(J))-
(FOR 13:=1:2 SUM C2(13,11,)*D(13,12))-
(FOR 13:=1:2 SUM C2(13,12,)*D(11,13)))))+F(0);
WRITE BEQ," =0";
FOR I:=1:2 DO WRITE NI(I)," =0":
BYE; :

4.3.3 Remarks

The REDUCE program and solution shown above are just for the case of plates. For
the geometry other than plates, the program is easily modified by changing the input parametric
equations in the beginning of program. As the results show, the formulae of strain, bending,
stress, moment tensors and equilibrium equations are functions of three displacements and their
derivatives. Therefore we may assume three displacement fields as polYnomial (or power
series, Fourier series etc.), neglect the unnecessary terms and solve the problem. Since it is out
of the scope of this report, it will be left to the interested researchers.



4.4 Approximation of a function by Fourier series

4.4.1 Introduction

Mathematically, two functions which belong to different spaces are apparently different
in properties. It is theoretically impossible to replace one in terms of the other. However, to
approximate one by the other is feasible and is actually adopted by many engineers in various
fields. The purpose of approximation depends on the problem. It may be for avoiding the
mathematical difficulties or for simplifying the function so that it can be solved easily. Some
popular methods to approximate a function include Taylor series approximation and Fourier
series expansion etc. Since they are the approximation methods, the accuracy is up to the
number of terms included. Of course, as more terms are involved in the f ormulation, more
complicated expression will turn out and possibility of making errors is increased. Based on
these reasons, even though a function can be approximated theoretically, a high accuracy in
evaluation of such approximations is difficult to achieve. By the symbolic and algebraic
manipulation, the approximation can be formulated without errors and the desired accuracy can
be attained. Here, an example of Fourier series approximation to the hat function will be shown
to demonstrate the advantages of application of symbolic and algebraic manipulation.

The hat function is a fundamentals of shape function in finite element method. It is
defined as :

f(x)=14+x ,for -1<x <0
{f(X)-l—x Jfor O0sx <-1

Mathematically, it's a piecewise c! continuous function which certainly is different
from the sinusoidal function which is C continuous function within the domain they span.

The approximation to the hat function by Fourier series is expressed as

msz ) + b,,sin(nzx ) (4.23)

a, i
- —— a,
f(x) 5 +nZ-l cos(

where the Fourier coefficients are evaluated as follows
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L
a,= %—f J(x)dx (4.24)

L

a,= %Lf(x)cos( P dx (4.25)
L

b, = -Ll-f_Lf(x)sin(”’Zx )dx (4.26)

4.4.2 REDUCE program for generating Fourier series

The REDUCE program to generate the Fourier series and output a fortran subroutine
for hat function is shown in the follow assuming L=1.0. This program can be used to generate
Fourier series for an arbitrary function by simply changing the input function.

%
% Inputting the given function and informations.

% M . number of piecewise bounded interval.

% f(M): the function in the Mth interval.

% c(n) : the upper and lower limit of finite integration.
%1  : half length of interval.

% k  : number of Fourier series terms needed.

%

M:=2;

K:=50;

ARRAY F(M),C(M+1);
f(1):=1+4x; %oc(1) =< x =< ¢(2)
f(2):=1-x; %c(2) =< x < ¢(3)
c(1):=-1;c(2):=0;¢c(3):=1;
I:=(c(m+1)-c(1))/2;

%
% Obtaining the Fourier series coefficients
%

a0:=for i:=1:m sum

(sub(x=c(i+1),int(f(i),x))-sub(x=c(i),int(f(i),x)))/1;

an:=for i:=1:m sum
(sub(x=c(i+1),int(f(i)*cos(n*pi*x/1),x))
-sub(x=c(i),int(f(i) *cos(n*pi*x/1),x)))/l;

bn:=for i:=1:m sum
(sub(x=c(i+1),int(f(i)*sin(n*pi*x/1),x))
-sub(x=c(i),int(f(i)*sin(n*pi*x/1),x)))/;

on rat;

on div;

%
% Generating the Fourier series.
%




fs:=a0/2+for i:=1:k sum

sub(n=i,an)*cos(i* pi*x/1)+sub(n=i,bn)*sin(i*pi*x/1);
off echo;

on fort;

cardno!*:=10;

%
% Outputting the fortran subroutine of Fourier series.

Y ’ =

out "fourier.ftn";

write " subroutine fourier(x,fs)";
write " implicit real*8(a-h,0-z)";
write " pi=3.141592654";

fs:=fs;
write "  return";
write"  end";
shut "fourier.ftn":
bye;

4.4.3 Resultant fortran subroutine from REDUCE

The following results are produced automatically from the above REDUCE program for
fifty terms Fourier series case. This subroutine can be directly input into fortran main program
without any troubles.

subroutine fourier(x,fs)

implicit real*8(a-h,0-z)

pi=3.141592654
ANS1=4./625.*COS(25.*PI*X)*PI**(-2)+4./529.*COS(23.*
. PI¥*X)*P1**(-2)+4./441.*COS(21.*PI *X)*PI **(-2)+4./

. 361.*COS(19.*PI*X)*PI**(-2)+4./289.*COS(17.*PI*X)*PI
L FX(2)4+4.1225.X*COS(15.*PI*X)*PI**(-2)+4./169.* COS(

L 13¥PI*X)*PI**(-2)+4./121.*COS(11.*¥PI*X)*PI**(-2)+4./
. 81.*COS(9.*PI*X)*PI**(-2)+4./49.* COS(7. *PI*X) *PI **(-2
)+4.25.*COS(5.*PI*X)*PI**(-2)+4./9.*COS(3.*PI*X)*PI
CERCD+1L/2.
FS=4.*COS(PI*X)*PI**(-2)+4./2401.*COS(49.*PI *X)* P ¥*(
. =2)+4./2209.*COS(47 . *PI* X)*PI**(-2)+4./2025.*COS(45.

. *PI*X)*PI**(-2)+4./1849.*COS(43.*PI*X) *P] **(-2)+4./

. 1681.*COS(41.*PI*X)*PI**(-2)+4./1521.*COS(39.*PI *X)*
. PI**(-2)4+4./1369.*COS(37.*PI*X) *PI**(-2)+4./1225.*

. COS(35.*PI*X)*PI**(-2)+4./1089.* COS(33.*PI*X) *PI **(
. =2)+4./961.*COS(31.¥PI*X)*PI**(-2)+4./841 . *COS(29.*

. PI*X)*PI**(-2)+4./729.#COS(27.*PI*X)*PI **(-2)+ ANS1
eturn

end

67



Four curves are plotted in the same figure for three-term, five-term , seven-term and
fifty-term cases. As the figure shows, the hat function can be actually simulated by Fourier
series. When fifty terms are used, the difference between hat function and its Fourier series is
just invisible although they are in different spaces. This is one of the advantages of the
application of symbolic and algebraic manipulation.

N-E . T T
-.0 ~o.8 0.0 o.s Lo

Figure 4.3 : Convergence of Fourier series approximation

4.5 Template for nonlinear numerical analysis
4.5.1 Introduction

In nonlinear numerical analysis, it is necessary to evaluate the Jacobian matrix and to
solve the system of equations at each iteration. Symbolically, the Newton-Raphson iteration
can be expressed as

XY a1 1{F} (4.27)

Since the evaluation of the inverse of the Jacobian matrix is quite time-consuming,
equation (4.27) is traditionally changed into the following form and then is solved as a linear
system of equations at each iteration stage.

U Hax}" - (F} (4.28)

Although the avoidance in evaluation of the inverse of the Jacobian does expedite the
execution, it still takes time to solve a system of equations, especially for the case of a large
number of unknowns. With the help of symbolic and algebraic manipulation, the efficiency can
be improved further.



Instead of transforming equation (4.27) into equation (4.28), it is rearranged into

(k1)

- x e ax et 1'{F} (4.29)

The application of symbolic and algebraic manipulation to this problem is to make a
template form of the right,hand,side of equation (4.29). This includes the symbolic evaluation
of the Jacobian matrix, its inverse, and the multiplication of the matrix by load vector. The
results are then converted into fortran code for numerical analysis. The iterations are done by
simply substituting the current solutions into the template formulae to.get the residuals. This
substitution is much faster than solving the system of equations. This is a new way to improve

the efficiency of program execution.

4.5.2 Preliminary formulation

The above idea is demonstrated by solving the Fermat-Weber location problem for the
case of a two-dimensional Euclidean space. Given n fixed points '(Xi' yi), i=1,..,n, in the
plane, the object of the Fermat-Weber problem is to find the best location to minimize the total
length of the distances among the optimal location and each point. Mathematically, it is

Minimize E.J(x —xi)2+(y —yl,)2 (4.30)

or rewritten in the following form

Minimize Y|k, - ALY | (4.31)
t =1

where (x,y) is the coordinate of the optimal location to be found, and

c, - ();) (4.32)
A - [(1) ?] (4.33)
Y - (;) (4.34)

Intuitively, the minimization will be accomplished by differentiating equation (4.31)
with respect to ¥ and setting the results to zero. But since the objective function in equation
(4.31) 1s not differentiable at the exact (x;y;) points, a smoothing parameter e is introduced

into the object function to avoid the difficulty.
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D, )= E.‘/"C ~ATY [+’ (4.35)

The perturbed objective function now becomes differentiable everywhere and is strictly
P
convex. Then 5~ = O will result in a fixed point iteration

pn [wa"A,Af]—l(ZW"’AiCi) k =0,1,2: - - (4.36)

Where the weight w %) is defined as

1
;,F‘ -AY "21+ e?

w® o

1

(4.37)

4.5.3 REDUCE program

Consider the specific problem which is to find the optimal location among three points
(0,1), (0,-1) and (x,0) where x varies in the range [0, ©). The REDUCE program is based on
equation (4.36).
peecmmmememmem -
% waa : W*A*A in equation (4.36)

% wac : W*A*C in equation (4.36)
e mmm e mm e mo e e e e

matnix waa(2,2),wac(2,1);
waa(l,1):=1/sqri(r1)+1/sqrt(r2)+1/sqrt(13);
waa(2,2):=waa(l,1);
wac(1,1):=x1/sqrt(r1)+x2/sqrt(r2)+x3/sqrt(r3);
wac(2,1):=y 1/sqrt(r1)+y2/sqrt(r2)+y3/sqrt(r3);
wac:=(1/waa)*wac;

on fort;

off echo;

off period;

cardno!*:=10;

out "cssa.ftn";

write " subroutine cssa(x1,y1,x2,y2,x3,y3,pu,x0,y0)";
write " implicit real*8(a-h,0-2)";

write " rl=(X-X1)**2+(y-y1)*¥*2+pu**2";
write " r2=(X-X2)**2+(y-y2)**2+pu**2";
write " 13=(X-X3)**2+(y-y3)**2+pu**2";
write"  x=",wac(l,1);

write"  y=",wac(2,1);

write"  return”;

write" end";

shut "cssa.ftn";

bye;
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4.5.4 Fortran subroutine from REDUCE

The fortran subroutine produced here is applicable when the number of points is three.
The coordinates of three points are arbitrary. The perturbation parameter is an arbitrarily small
number except zero. The resultant optimal locations are plotted in Figure 4.4. with respect to
variable x3. The execution time for this problem on Apollo workstatior Domain 4000 is too
small to be measured. The difference in execution time will be more sj gnificant when the size
of the problem is increased.

subroutine cssa(xl,yl,x2,y2,x3,y3,pu,x,y)
implicit real*8(a-h,0-z)
rl:(x-x1)**2+(y-y1)**2+pu**2
r2=(x-x2)**2+(y-y2)**2+pu**2
r3=(x-x3)**2+(y-y3)**2+pu**2
x=(SQRT(R2)*SQRT(R1)*R3*X1+SQRT(R2)*SQRT(R1)*R3*X2+
. SQRT(RB)*SQRT(RI)*R2*X1+SQRT(R3)*SQRT(R1)*R2*X3+SQRT
. (R3)*SQRT(R2)*R1*X2+SQRT(R3)*SQRT(R2)*R1*X3+R1*R2*X3
. +R1*R3*X2+R2*R3*Xl)/(2*SQRT(R2)*SQRT(R1)*R3+2*SQRT(
. R3)*SQRT(R1)*R2+2*SQRT(R3)*SQRT(R2)*R1+R1*R2+R1*R3+
R2*R3)

Y=(SQRT(R2)*SQRT(RI)*R3*Y 1+SQRT(R2)*SQRT(R1)*R3*Y 2+

. SQRT(RB)*SQRT(RI)*RZ*Y1+SQRT(R3)*SQRT(R1)*R2*Y3+SQRT
- (R3)*SQRT(R2)*R1*Y 2+SQRT(R3)*SQRT(R2)*R1 *Y3+R1*R2*Y 3

. +R1*R3*Y2+R2*R3*Y1)/(2*SQRT(R2)*SQRT(RI)*R3+2*SQRT(

- R3)*SQRT(R1)*R2+2*SQRT(R3)*SQRT(R2)*R 14R1*R24+ R 1 *R3+

. R2*R3)

return
end

1.0

0.8 <

0.0

»

0.4

0.2+

°-° ¥ L) ¥ T

Q 0.2 C.4 0.8 0.8 ]

x3 lesalion

Figure 4.4 : Behavior of optimal location vs. variable x3
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4.6 Triangular stiffness and mass matrix construction
4.6.1 Preliminary formulation

Itis well known that the finite element method has become a powerful tool in solving
general engineering problems. Usually the finite element method is applied in three steps:

1. Domain discretization (pre-processing).

2. Constructing the stiffness, mass matrices and load vectors etc., then prescribing the
boundary conditions and solving them.

3. Results treatment (post-processing).

While computing stiffness and mass matrices, partial differentiation, matrix
multiplication, matrix inversion and integration are required. For a hi gher order interpolation,
the formulation is always very tedious and prone to introduce errors. With the aid of symbolic
and algebraic manipulation, all these troubles can be alleviated. The example shown in this
section will demonstrate the application of symbolic and algebraic manipulation to the automatic
construction of stiffness and mass matrix of six-node triangular element for a heat transfer
problem.,

The stiffness K and mass M matrices are defined as follows assuming unit thickness.
K = (B" *D % Bda (4.38)
I3
M =[N *N »psc,da (4.39)
2

where the shape functions are

N4-4*sl*s2, , N5-4*szts3, N6-4*s3*s,,
N, =s - 3(N,+N), N,=s,-3(N,+N), Ny=s,- 3(N,+N ) (4.40)

The B matrix is evaluated by the formulae of
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[ ON, oN oN,
¢i'sl asz as3
¢9N2 ¢9N2 ON )
o’?sl 632 o’is3
oN, oN, oN, 5
c
. s, s, 2 bl cl
oN, oN, oN , b’ 2
c
s, os, os 3 3
oN oN , oN
o"sl ds2 as3
oN oN oN
o'?s1 c?s2 053

The material property matrix D is assumed to be symmetric

d d

12 22

D = [dn dlZ]

The b;, ¢; here are expressed by global nodal coordinates.
P b 1 1
1'J_(yz_y3)’ 2'7()’3—)71), b3'7(y1_y2)
1 1 1
CI-T('x:i_xZ)’ CZ-T(xl_x3)’ Ca'T(xz"xl)

The Jacobian J is equal to

J o= (X, =X )y, =¥, = (¥, -y, )(x, - x,) = 2*area

4.6.2 REDUCE program for stiffness matrix

MATRIX NS(6,3),NS1(2,6),NS2(2,6),NS3(2,6),BB(2,6);
ARRAY N(6),B(3),C(3);

N(4):=4*%S1*S2;
N(5):=4*S2*S3;
N(6):=4*S3*S1;
N(1):=S1-(1/2)*(N(6)+N(4));
N(2):=82-(1/2)*(N(4)+N(5));
N(3):=S3-(1/2)*(N(5)+N(6));
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%___ e emctccnavoer e
JoCalculate the Jacobian, area and b(i),c(i) defined in Eq.(4.43)& (4.44)
% e e e e e e e
JAC:=(X1-X3)*(Y2-Y3)-(X2-X3)*(Y1-Y3);

AREA:=JAC/2,

B(1):=(Y2-Y3)/JAC;

B(2):=(Y3-Y1)/JAC;

C(1):=(X3-X2)/JAC;

C(2):=(X1-X3)/JAC;

B(3):=-B(1)-B(2);

..................................................

PoCalculating B matrix defined in Eq. (4.41).

Gpwmmmmmmm e e e e e e

FOR M:=1:2 DO <<

FOR I:=1:6 DO <<

NS(1,1):=DF(N(),S l);NS(I,2):=DF(N(I),SZ);NS([,3):=DF(N(I),S3);

IF M=1 THEN BB(M,]):=FOR J:=1:3 SUM (B(J)*NS(1,J)) ELSE

BB(M,I):=FOR J:=1:3 SUM (COHENS(LD)>>>>:

FOR I:=1:2 DO <<FOR J:=1:6 DO

<<NSI(I,J):=SUB(S1=2/3,52=1/6,83=1/6,BB(1,J));
NS2(I1,J):=SUB(S1=1/6,5S2=2/3,83= 1/6,BB(1,J));
NS3(I,J):=SUB(Sl=1/6,82=1/6,S3=2/3,BB(I,J))>>>>;

L N e an

%Given the symmetric material matrix.

Gpommemmmmmmm e -

MATRIX D(2,2),

D:=MAT((K11,K12),(K12,K22));

MATRIX LO(6,6),NU(6,6),CC(6,6),SKE(6,6):

%Obtaining the stiffness matrix.

SKE::(AREA/B)*(TP(NS1)*D“‘NS1+TP(N82)*D*NSZ+TP(NSS)*D"NS3)$

Gp=mmam e m e e m e e em e -

%Making the appropriate substitution to simplify the final expression.

Gpemmeemmmmmmmm e -

COB:=-(X3*Y2-X3*Y 1-X2*Y3+X2*Y 1+X]1 *Y3-X1*Y?2);

FOR [:=1:6 DO FOR J:=1:6 DO

<<LO(I ,J):=DEN(SKE(I,J));NU(I,D::NUM(SKE(LJ));CC(I,J)::LO(I J)/COB;

SKE(L,J):=NU(LL))/(CC(1,J)*DJ)>>;

%p--

%Outputting the resultant fortran subroutine.
%

ON FORT;

OFF ECHO;

OFF PERIOD;

OUT "sym";

WRITE"  subroutine stiff(x1,y1,x2,y2,x3,y3,d11,d12,d22 ske)";
WRITE"  implicit real*8(a-h,0-z)";

WRITE"  dimension ske(6,6)";

WRITE " DJ:-(X3*Y2-X3*Y1-X2*Y3+X2*Y1+X1*Y3-X1*Y2)";
FOR I:=1:6 DO FOR [J:=1:6 DO

IF J>=I THEN WRITE "SKE(",I,"," J,")="SKE(I J)

ELSE WRITE "SKE(",1,",",J,")=SKE(" J,",".1.,")":
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WRITE" returm";
WRITE" end";
SHUT "sym";

OFF FORT;

BYE;

4.6.3 Resultant stiffness matrix made by REDUCE

subroutine stiff(x1,y1,x2,y2,x3,y3,d11,d12,d22,ske)

" implicit real*8(a-h,0-z)
dimension ske(6,6)
DJ:-(X3*Y2—X3*Y1-X2*Y3+X2*Y1+X1*Y3-X1*Y2)
SKE(L,1)=(D11*¥Y2**2-2*¥D] 1 *Y2*Y3+D11¥Y3**2_2*D]2¥X2%Y 2
- +2*D12*X2*¥Y342*¥D12*X3*Y 2-2*¥D12*X3*Y3+D22* X2*¥*2.2* 22
. ¥X2*¥X3+D22*X3%*2)/(2*DJ)
SKE(1,2)=(D11*Y 1*¥*Y2-D11*Y 1*Y3-D11*Y2*Y3+D11*Y3**2.D]2
*¥X1*¥Y2+4D12*¥X1*Y3-D12*X2*Y 1+D12*X2*Y3+D12*X3*Y 1 +D12*
- X3¥Y2-2*D12*X3*Y3+D22* X 1¥X2-D22* X 1 *X3-D22*X 2% X3+ D22 *
. X3%%2)/(6*¥DJ) -
SKE(1,3)=-(D11*Y 1*Y2-D11*Y 1*Y3-D11*¥Y2**24+D]11¥Y2*Y 3-
. DI2*X1*Y2+D12*X 1*¥Y3-D12*X2*Y 142*¥D12*X2*Y 2-D12*X2*Y 3+
- DI2*X3*Y 1-D12*X3*Y2+D22*X 1 *X2-D22*X 1¥X3-D22*¥X2%*2
. D22%¥X2*X3)/(6*DJ)
SKE(1,4)=-(2*(D11*Y 1¥*Y2-D11*Y 1*Y3-D11*¥Y2*Y3+D11*Y3**2
- -DI2*X1*Y2+4D12*X1*Y3-D12*X2*Y 1+D12*X2*Y3+D12*X3*Y [+
. DI2*X3*Y2-2¥D12*X3*Y3+D22*X 1*X2-D22* X 1*X3-D22*X2*¥ X3+
. D22*X3**2))/(3*DJ)
SKE(1,5)=0
SKE(1,6)=(2¥(D11*Y 1¥Y2-D11*Y 1*Y3-D11*¥Y2**24 D] | *Y 2*Y 3-
- DI2*X1*Y2+4D12*¥X1*Y3-D12*X2*Y [42*¥D12*X2*Y2-D12*X2*Y 3+
. DI2*X3*Y 1-D12*X3*Y2+D22* X 1 *X2-D22*X 1 *X3-D22*X2**2,
. D22*X2*X3))/(3*DJ)
SKE(2,1)=SKE(1,2)
SKE(2,2)=(D11*Y 1¥*¥2-2¥D11*Y 1*Y3+D11*Y3**2.2¥D]2*X | *Y |
- +2*D12*X1*¥Y3+2*¥D12*¥X3*Y 1 -2*D12*X3*Y3+D22*X | **2-2* D22
. *X1*X3+D22*X3**2)/(2*DJ)
SKE(2,3)=(D11*Y 1**2-D11*Y 1*Y2-D11*Y 1*Y3+D11*Y2%Y3-2%
- DI2*X1*Y 1+D12*X1*Y2+D12* X 1*Y3+D12*¥X2*Y 1-D12*X2*Y 3+
. D12*¥X3*Y 1-D12*X3*Y 24+D22* X 1**2-D22*X 1*X2-D22*X 1 *X 3+
. D22*X2*X3)/(6*DJ)
SKE(2,4)=-(2¥(D11*Y 1*Y2-D11*Y 1*Y3-D11*¥*Y2*Y3+D11*Y3**2
. -DI2*X1*Y2+D12*X1*Y3-D12*X2*Y 1+D12*X2*Y3+D12*X3*Y 1+
- D12*X3*Y2-2*D12*X3*Y3+D22* X 1 *X2-D22* X 1*X3-D22*X2*X3+
. D22*X3%*%2))/(3*DJ)
SKE(2,5)=-(2¥(D11¥Y 1**2-D11*Y 1 *Y2-D11*Y 1*Y3+D11*Y2*Y3
-2*DI2*X1*Y 1+D12*X1*¥Y2+D12*X 1*Y3+D12*¥X2*Y 1-D12*¥X2*Y3
- +D12*X3*Y 1-D12*¥X3*Y 24+D22*X 1 ¥*2.D22*¥X 1 *X2-D22*X | *X3+
. D22*X2*X3))/(3*DJ)
SKE(2,6)=0
SKE(3,1)=SKE(1,3)
SKE(3,2)=SKE(2,3)
SKE(3,3)=(D11*Y 1¥*2-2*D11*Y | *Y2+D11*Y2**2.2*D12*X 1 *Y |
- +2*¥DI12*¥X1*Y2+42%¥D12*X2*Y 1-2*D12¥X2*¥Y 24 D22* X | ¥¥2.2% D22
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X 1*X2+D22*X2**2)/(2%D)J)

SKE(3,4)=0
SKE(3,5)=-(2*(D11*Y 1**2-D11*Y 1*Y2-D11*Y 1 *Y3+D11*Y2*Y3

--2*DI2*X 1*Y 1+D12* X 1*Y2+D12*X [ *Y3+D12*X2*Y 1-D12%¥X2* Y3
- +D12*X3*Y 1-D12*X3*Y2+D22* X 1¥#2-D22*X 1 *X2-D22*X 1 *X3+
. D22*X2%X3))/(3*DJ)

SKE(3,6)=(2%(D11*Y 1*Y2-D11*Y 1*Y3-D11*Y2¥*2+D] 1¥Y2*Y3-

- DI2*X1*Y2+D12*X1*Y3-DI12*X2*Y 142*D12*X2*Y2-D12*¥X2%Y 3+
- DI2*X3*Y [.D12*X3*Y 24+ D22*X 1*X2-D22*X | *X3-D22*X2¥*24
. D22*X2*X3))/(3*DJ)

SKE(4,1)=SKE(1,4)
SKE(4,2)=SKE(2,4)

SKE(4,3)=SKE(3,4)
SKE(4,4)=(4*(D11*Y1**2-D11*Yl*Y2-D11*Yl*Y3+D11*Y2**2-
. Dl1*Y2*Y3+D11*Y3**2-2*D12*X1*Y1+D12*X1*Y2+D12*X1*Y3+
. D12*%X2*Y 1-2*D12*X2*Y2+D12*X2*Y3+D12*X3*Y 1+D12*X3*Y 2-
. 2*D12*X3*Y3+D22*Xl**2-D22*X1*X2-D22*X1*X3+D22*X2**2-
. D22*X2*X3+D22*X3**2))/(3*DJ)

SKE(4,5)=(4*(D11*Y 1*Y2-D11*Y 1*Y3-D11*Y2**24D] 1*Y2*Y3-
. D12*X1*Y2+D12*X1*Y3-D12*X2*Y1+2*D12*X2*Y2-D12*X2*Y3+
. D12*X3*Y 1-D12*X3*Y2+D22* X 1*X2-D22*X 1*X3-D22* X2%%2
. D22*X2%X3))/(3*DJ)

SKE(4,6)=-(4*(D11*Y 1**2-D11*Y 1*Y2-D11*Y 1 *Y3+D11*Y2*Y3
L-2*¥DI12*X1*Y 1+D12*X1*Y2+D12*X1*Y3+D12*X2*Y 1-D12*X2*Y3
. +D12*X3*Y1-D12*X3*Y2+D22*X1**2-D22*X1*X2-D22*X1*X3+
. D22*X2*X3))/(3*DJ)

SKE(5,1)=SKE(1,5)

SKE(5,2)=SKE(2,5)

SKE(5,3)=SKE(3,5)

SKE(5,4)=SKE(4,5)

SKE(5,5)=(4*(D11*Y 1**2-D11*¥Y 1*Y2-D11*Y 1*Y3+D11¥Y 2**2.

- D11*Y2*¥Y34D11*¥Y3**2-2*D12*X1*Y 1+D12*X 1*Y24+D12*X 1*Y3+
. D12*X2*Y1-2*D12*X2*Y2+D12*X2*Y3+D12*X3*Y1+D12*X3*Y2—
. 2*D12*X3*Y3+D22*Xl**2-D22*X1*X2—D22*X1*X3+D22*X2**2-
- D22*X2*X3+D22*X3*%2))/(3*DJ)

SKE(5,6)=-(4*(D11*¥Y 1*Y2-D11*Y1*Y3-D11*Y2*Y3+D1 13Y3%%2

. -D12*X1*Y2+D12*X1*Y3-D12*X2*Y1+D12*X2*Y3+D12*X3*Y1+
. D12*X3*Y2-2*D12*X3*Y3+D22*X1*X2-D22*X1*X3-DZ2*X2‘X3+
. D22*X3%*2))/(3*DJ)

SKE(6,1)=SKE(1,6)

SKE(6,2)=SKE(2,6)

SKE(6,3)=SKE(3,6)

SKE(6,4)=SKE(4,6)

SKE(6,5)=SKE(5,6)

SKE(6,6)=(4*(D11*Y 1**2-D11*Y 1*Y2-D11*Y 1¥Y3+D11*Y2%%2.

. D11*Y2*Y3+D1 1*¥*Y3**2-25¢D12*X 1*Y 1+D12*X 13Y2+D12*X 1 *Y 3+
. D12*X2*Y 1-2*D12*X2*Y2+D12*X2*Y3+D12*X3*Y 1+D12*X3*Y?2-
. 2*D12*X3*Y3+D22*X1**2-D22*X1*X2-D22*X1*X3+D22*X2**2-
- D22*X2*X3+D22*X3**2))/(3*DJ)

return

end
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4.6.4 REDUCE program for mass matrix

MATRIX N(1,6),SQN(6,6),NS(6,6),DMASS(6,6),SDIF(6,6);
N:=MAT((N1,N2,N3,N4,N5,N6));

% Calculating the integrand.
Gmmmmm e memme

N4:=4*S1*82;
N5:=4*S2*83;
N6:=4*S3*S1,
N1:=S1-(1/2)*(N6+N4);
N2:=82-(1/2)*(N4+N5);
N3:=83-(1/2)*(N5+N6);

% Evaluating the integration.

Gmmmmmmmmmme e

LET S3=1-S1-82;

FOR I:=1:6 DO FOR J:=1:6 DO IF I<=J THEN <<
A:=INT(SQN(1,J),S2);B:=SUB(S2=1-S1,A)-SUB(S2=0,A);
C:=INT(B,S1);NS(I,J):=SUB(S1=1,C)-SUB(S1=0,C)>>
ELSE NS(I,J):=NS(J,I);

ON FORT;

OFF ECHO:;

OFF PERIOD:;

OUT "mass.ftn";

WRITE"  SUBROUTINE MASS(X1,Y 1,X2,Y2,X3,Y3,RO,CP,DMASS)";
WRITE"  IMPLICIT REAL*8(A-H,0-2)";

WRITE " DIMENSION DMASS(6,6)";

WRITE " AREA=-(X3*Y2-X3*Y 1-X2*Y3+X2*Y 1+X1*Y3-X1 *Yy2)/2";
DMASS:=RO*CP*2* AREA*NS;

WRITE" RETURN";

WRITE" END";

SHUT "mass.ftn";

Pppmmmmemmmee e
% checking the correctness of results.

Gmmm e e e e e mame

OFF FORT; OUT "CHECK";

R:=FOR I:=1:6 SUM <<FOR J:=1:6 SUM DMASS(I,J)>>;
SDIF:=DMASS-TP(DMASS); SHUT "CHECK";

BYE;

4.6.5 Fortran results of mass matrix

SUBROUTINE MASS(X1,Y1,X2,Y2,X3,Y3,RO,CP,.DMASS)
IMPLICIT REAL*8(A-H,0-Z)



DIMENSION DMASS(6,6)
AREA=-(X3%Y2-X3*Y 1-X2*¥Y3+X2%Y 1+X1¥Y3-X1*Y2)/2
DMASS(1,1)=(AREA*CP*R0)/30
DMASS(1,2)=-(AREA *CP*RO)/180
DMASS(1,3)=-(AREA *CP*RO)/180
DMASS(1.4)=0
DMASS(1,5)=-(AREA *CP*R0)/45
DMASS(1,6)=0
DMASS(2,1)=-(AREA *CP*RO)/180
DMASS(2,2)=(AREA*CP*R0)/30
DMASS(2,3)=-(AREA *CP*RO)/ 180
DMASS(2,4)=0

DMASS(2,5)=0
DMASS(2,6)=-(AREA*CP*R0)/45
DMASS(3,1)=-(AREA *CP*RO)/180
DMASS(3,2)=-(AREA *CP*RO)/ 180
DMASS(3,3)=(AREA *CP*R0)/30
DMASS(3,4)=-(AREA*CP*R0)/45
DMASS(3,5)=0

DMASS(3,6)=0

DMASS(4,1)=0

DMASS(4,2)=0
DMASS(4,3)=-(AREA *CP*R0)/45
DMASS(4,4)=(8* AREA*CP*R0)/45
DMASS(4,5)=(4* AREA*CP*R0)/45
DMASS(4,6)=(4* AREA*CP*R0)/45
DMASS(5,1)=-(AREA*CP*RO)/45
DMASS(5,2)=0

DMASS(5,3)=0

DMASS(5,4)=(4* AREA*CP*R0)/45
DMASS(5,5)=(8*AREA*CP*R0)/45
DMASS(5,6)=(4* AREA*CP*R0)/45
DMASS(6,1)=0
DMASS(6,2)=-(AREA *CP*R0)/45
DMASS(6,3)=0
DMASS(6,4)=(4* AREA *CP*R0)/45
DMASS(6,5)=(4*AREA*CP*R0)/45
DMASS(6,6)=(8* AREA *CP*R0)/45
RETURN

END

4.6.6 Checking correctness of results

In some cases, the results from REDUCE are lengthy as the sti{fness matrix shown
above. It is very important to find a way to check their correctness. In general, a small problem
with a known solution is used to test the correctness of a symbolic program before application
to actual problems. In addition, some specific checking procedures are also available in each
individual field. They require a knowledge of the specific field. Taking the mass matrix
problem above as an example, the summation of the entries of the mass matrix should be equal
to unit multiplied by the accessory constants. The symmetry of mass matrix is proven by
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subtracting the mass matrix from its transpose to get zeros for each entries. The REDUCE
program to check correctness is appended in the program shown in subsection 4.6.4. The
following results include two parts. The first R is the summation of each entries of mass
matrix. The second SDIF(i.j) are the difference of mass matrix and its transpose. These
checking results confirm the correctness of REDUCE program.

% Checking the correctness of mass matrix by summing each entries
% of mass matrix to make an unit multiplied by accessory constants
G mmmmmmmme o e e e e m e e e m mm e mm
R := AREA*CP*RO

Op=m=mmmmmm e mm e s e e e e e e e e
% Checking the symmetry of mass matrix by finding the difference
% between mass matrix and its transpose.

pmmmmmmcmmcmmmemmmmen et
SDIF(1,1) :=0

SDIF(1,2) :=0

SDIF(1,3) :

SDIF(3,4) :
SDIF(3,5) :
SDIF(3,6) :
SDIF(4,1) :
SDIF(4,2) :
SDIF(4,3) :
SDIF(4,4) :
SDIF(4,5) :
SDIF(4,6) :
SDIF(5,1) :
SDIF(5,2) :
SDIF(5,3) :
SDIF(5,4) :
SDIF(5,5) :
SDIF(5,6) :
SDIF(6,1) :

L T U {1 1V V{1 O O O [ O O T O [ T A T A T R TR TR TR VI !
jejejojeisjofolojololololololelielololololololololofofololeolololo o)
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4.7 Closed form solution of stiffness matrix of four-node element
4.7.1 Introduction

Although the methodology to construct the stiffness matrix of four-node isoparametric
quadrilateral element for the plane elasticity problem is the same as that of the triangular element
shown in last section, the techniques are quite different from each other. In the triangular
element, the Jacobian determinant is constant and therefore the integration is straightforward.
However the same advantage can't be gained for the isoparametric quadrilateral element. In
general, the determinant of the Jacobian is a function of the natural coordinates. Having the of
Jacobian determinant in the denominator of the integrand due to the coordinate transformation
produces a tremendous difficulty in performing integration analytically, therefore the numerical
Gauss quadrature rule is usually introduced to solve this problem. The discussions of this
difficulty and the introduction of Gauss quadrature rule can be found in most relevant
literatures, such as Zienkiewicz [10], Becker & Carey & Oden [11], Cook [12], Reddy [13],
Huebner [14], Weaver & Johnson [15].

The inability to perform analytic integration introduces the integration error in the finite
element results. The following paragraphs will show that this difficulty has been overcome and
the exact closed-form solution has been obtained by appropriate application of REDUCE [8).

4.7.2 Preliminary formulation

The local stiffness matrix for a 2-D isoparametric quadrilateral element is formulated by

1 1
K-fJ'BT*E *B xt »|J|dE dn (4.45)
-M-1

Where
* K : local stiffness matrix.
* E : matenial property matrix.
* |JI : determinant of Jacobian matrix.
* E, 1} : natural coordinates.

» t : thickness of element.



* B : strain-displacement matrix.

In general, each entry of strain-displacement matrix B is a function of E, n, Jl and can
be expressed as :

c,+cE +c,m+c iy
b,Enl D= i (4.46)

Where

. bij : are denoted by the entry in ith row and'jth column of matrix B

b Ci : are constants.

For simplicity, the material property matrix E and the thickness t are assumed to be
independent of natural coordinates. The integrand in equation (4.45) therefore will be function
of &, n and 1Jl, too. The entry of integrand can be expressed specifically as :

2 2 2
d +dE+dn+dE +dfn+dn*+dEn+dEn*+dsn’
g,&n - ————p7— : : (4.47)

Where di, d»,...., dg are constants, too.

The Jacobian J is

a9
3 23 Ju Tz

J = - 4
x ol ) 9
on am

And the global coordinate variables X, y can be transformed to local coordinate by the same
shape functions as those of field variables. This is an intrinsic property of an isoparametric
element.

x 'EN.-J‘.- , y = iN‘yi (4.49)
] i =l

Where

* X, yj:are global node coordinates.
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* N; : shape functions.

Specifically, the individual shape functions are

N,o=H{1-5)1-7) (4.50)
N,= S+ E)1-7) (4.51)
N,= {1+ 8)1+n) (4.52)
N,=50-85)1+m) (4.53)

and the entries of Jacobian are derived from equations (4.48) to (4.53).

11-75--;’,-( x2+x3—x4)+%(—xl+x2+x3-—x4)-axn+b, (4.54)

oy

le ? 7( y2+y3")"4)+%(°y1+yz+y3—y4)'ayn+by (4’55)
ox_ & i

Jy= =T, X, x, - x )+ =X, -x,+x,+x)=a.& +c, (4.56)

ox 3
J“-a—g---;(yl—y2+y3—y4)+%(—yl—y2+y3+y4)-a,§ +cC, (4.57)

Therefore, the determinant of the Jacobian will be

IJI ll 22 JI2JZI
=(b,a,-ab,)s+(a,c, -ac,)m +(b,c, +b,c,) (4.58)
=Us +Vnp+ W

where U, V, W are independent of natural coordinates.

Obviously, the determinant of the Jacobian is only a linear function of natural
coordinates. This linearity allows the exact integration to be performed and the logarithm
function is expected in the solution. As the first integration with respect to x is done, there is no
longer an integration variables h in the denominator. Therefore the second integration with
respect to h can also be performed analytically. However, the algebraic operations to finish
these two integrations are too tedious to be handled by hand. Fortunately, with the help of the
symbolic and algebraic manipulator REDUCE, these mathematical operations can be done by
computer. In addition, the solutions can be organized in a systematic way and converted into a
FORTRAN-code subroutine to be called by the main program. All of these procedures and
parts of solutions are demonstrated in the next paragraphs by an example of linear elasticity.
The explanations of commands and the time consumed in each individual command are also
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commented for reference. The total time consumed in this execution by REDUCE is around
two and half hours. The resultant fortran expressions for just an element of stiffness matrix
occupy almost sixteen pages. These huge expressions are the reason why the closed form
solution was not available before.

4.7.3 REDUCE program and explanation

% Tuming on the CPU elapse time.
pmmmmmm e mm e e e e meen
1: on time;

Time: 133 ms

% Inputting 4 shape functions.

% p and q are natural coordinates.
% p: xi

% q: ela

Gpmmmmmmm e
2: sl:=(1-p)*(1-q)/4;

P*Q-P-Q+1

Time: 600 ms
3: s2:=(1+p)*(1-q)/4;
P*Q-P+Q-1

Time: 167 ms
4: s3:=(1+p)*(1+q)/4;
P*Q+P+Q+1

Time: 167 ms
5: s4:=(1-p)*(1+q)/4;

P*Q+P-Q-1
R B R — -
4
Time: 166 ms
Dpemammmmmmmmmm .

% Expressing x & y by shape function
% and global node coordinates.
Opmememmmmmmee -- -




6: x:=s1*x1+s2*x2+s3*x3+54*x4;

X = (P*Q*X1-P*Q*X2+P*Q*X3-P*Q*X4-P*X 1+P*X2+P*X3-P*X4-
Q*X1-Q*X2+Q*X3+Q*X4+X 1+X2+X3+X4)/4

Time: 400 ms

7. y:=s1*y l+s2*y2+s3*y3+s4*y4,

Y = (P*Q*Y 1-P*Q*Y2+P*Q*Y3-P*Q*Y4-P*Y 1 +P*Y2+P*Y 3-P*Y4-
Q*Y 1-Q*Y2+Q*Y3+Q*Y4+Y 1+Y2+Y3+Y4)/4

Time: 267 ms

Opmmmmmmmmmmmeee ———- - -

% Declaring and Inputting matrix elements to calculate the strain-displacement matrix B.
% c :coefficient matrix

% jac : combination of Jacobian matrix

% sd : matrix containing the derivative of shape function.

% b : strain-displacement matrix.

% detj : determinant of Jacobian.

% j11,j12,j21,j22 : element of Jacobian matrix.
%

8. matrix c(3,4),jac(4,4),sd(4,8),b(3,8)$
Time: 550 ms

9: ¢:=mat((1,0,0,0),(0,0,0,1),(0,1,1,0))$
Time: 183 ms

10: jac::mat((j22,-j12,0,0),(-j21,j1 1,0,0),
(0,0,j22,-j12),(0,0,-j21,j11))$
Time: 284 ms

11: sd:=mat((df(s1,p),0,df(s2,p),0,df(s3,p),0,df (s4,p),0),
(df(s1,q),0,df(s2,q),0,df(s3,q),0,df(s4,q),0),
(0,df(s1,p),0,df(s2,p),0,df(s3,p),0,df(s4,p)),
(0,df(s1,q),0,df(s2,q),0,df(s3,q),0,df(s4,q)))$

Time: 833 ms

12: b:=c*jac*sd/detj$
Time: 417 ms

Ppmemmmne -

% Inputting material matrix D and calculating integrand.
% D : material matrix (assumed symmetric).

% Ga : integrand.

% th : thickness of element.

13: matrix d(3,3),ga(8,8);
Time: 316 ms

14: d:=mat((ell,el2,e13),(e12,e22,e23),(e13,623,e33))$
Time: 200 ms _

15: ga:=tp(b)*d*b*th*det;$
Time: 8067 ms



% S
% Evaluating each element of Jacobian.
% ——— e ———————
16: on factor;
Time: 150 ms

17: on div;
Time: 33 ms

18: on rat;
Time: 50 ms

19: j11:=df(x,p);

J11:= -}-*((Xl -X2+X3-X4H*Q-X1+X2+X3-X4)
Time: 7‘;0 ms

20: j12:=df(y,p);

J12:= --1-*((Yl -Y2+Y3-Y4H*Q-Y1+Y2+Y3-Y4)
Time: 5‘;0 ms

21: j21:=df(x,q);

21:= - -1--*((X1 +X2-X3-X4)-(X1-X2+X3-X4)*P)
Time: 6674ms

22: j22:=df(y.q); /

Jj22 .= - -}-*((Yl +Y2-Y3-Y4)-(Y1-Y2+Y3-Y4)*P)
Time: 65(;1ms

Gpmmmmmmmmm e mcaas USSR mmmemmeemmeeen

%Making substitution for Jacobian matrix.

% ax=(x1-x2+x3-x4)/4, bx=(-x1+x2+x3-x4)/4

Po ay=(y1-y2+y3-y4)/4, by=(-yl+y2+y3-y4)/4
% cx=(-x1-x2+x3+x4)/4, cy=(-y1-y2+y3+y4)/4

23: jl11:=ax*q+bx;
J11:= AX*Q + BX
Time: 333 ms

24: j12:=ay*q+by,
J12:=AY*Q + BY
Time: 117 ms

25: j21:=ax*p+cX,

21 := AX*P + CX
Time: 117 ms
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26: j22:=ay*p+cy;
J22 .= AY*P+ CY
Time: 116 ms

% ————

27: matrix j(2,2),ske(8,8);
Time: 200 ms

28: j:=mat((j11,j12),(j21,j22));
J(1,1) := AX*Q + BX

J(1,2) :=AY*Q + BY

J(2,1) .= AX*P + CX

J(2,2) = AY*P+ CY

Time: 367 ms

29: detj:=det(j);
DETJ := - ((AX*P + CX)*(AY*Q + BY) - (AX*Q + BX)*(AY*P + CY))
Time: 333 ms

Ppmmmmmmmemmce e e m e aen - -
FoMaking a further substitution and giving the lineality of determinant.
%

30: let -ax*cy+ay*cx=al,ax*by-ay*bx=a2,-bx*cy+by*cx=a3;
Time: 450 ms

31: detj:=dey;
DETJ:= - (A1*Q + A2*P + A3)
Time: 450 ms

32: on exp;
Time: 50 ms

Gpmemammmm e mmae —

%Performing the double integration.
%Due to the complication of the expression in the integrand, it is necessary to make the "pre-
Potreatment” to each element of integrand before integration. This is a vital step to avoid the
Plimitation of memory space and finish the job.
33: for i:=1:8 do for j:=1:8 do
if j>=i then
<<cpi=coeff(ga(i,j).p);
pO:=(first cp);
pl:=(second cp);
p2:=(third cp);
low:=den(ga(i,j));
ga(i,j):=(d0+d1*p+d2*p**2)/low;
cl:=int(ga(i,).p);
c2:=sub(p=1,c1)-sub(p=-1,c1);
c3:=sub(d0=p0*low,d1=p1*low,d2=p2*low,c2);
c4:=sub(log(al*q-a2+a3)=mlog,log(al *q+a2+a3)=plog,c3);
on €xp;




cq:=coeff(c4,q);

qO:=(first cq);

ql:=(second cq);

q2:=(third cq);

kO1:=lcof(num(q0),mlog)/den(q0);

qO:=reduct(num(q0),mlog)/den(q0);

k02:=lcof(num(q0),plog)/den(q0);

k03:=reduct(num(q0),plog)/den(q0);

kO4:=lcof(num(ql),mlog)/den(ql);

ql:=reduct(num(ql),mlog)/den(ql);

kOS:=lcof(num(q1),plog)/den(ql);

k06:=reduct(num(ql),plog)/den(ql);

kO7:=lcof(num(q2),mlog)/den(q2);

g2:=reduct(num(q2),mlog)/den(q2);

kO8:=Icof(num(q2),plog)/den(q2);

k09:=reduct(num(q2),plog)/den(q2);

c4:= dO1*log(al*q-a2+a3)+d02*log(al*q+a2+a3)+d03
+d04*q*log(al*q-a2+a3)+d05*q*log(al*q+a2+a3)+d06*q
+d07*q**2*log(al *q-a2+a3)+d08*q**2*log(al *q+a2+a3)
+d09*q**2;

cS:=int(c4,q);

c6:=sub(g=1,c5)-sub(q=-1,c5);

let log(al**2-al*a2+al*a3)=hl,log(-al**2-al*a2+al*a3)=h2,

log(al+a2+a3)=h3,log(-al+a2+a3)=h4,log(al-a2+a3)=h5,
log(-al-a2+a3)=h6;

factor h1,h2,h3 h4,h5 h6;

ske(1,)):=sub(d01=k01,d02=k02,d03=k03,d04=k04,d05=k05
,d06=k06,d07=k07,d08=k08,d09=k09,c6)>>
else ske(i,)):=ske(j,1);
Time: 234766 ms

%Showing the results for the element in Ist row and 1st column of the local stiffness matrix.
J%Hl=log(al**2-al*a2+al*a3), H2=log(-al**2-al*a2+al*a3)

J%H3=log(al+a2+a3) R H4=log(-al+a2+a3)
JoeH5=log(al-a2+a3) , Hé6=log(-al-a2+a3)
O mmmmem e mmm e e o e e e e e e o e e e mm e m e m e e e
34: ske:=ske;
1 -1 1 -1 -1 2
SKE(1,1) := HI*TH*(---*A1 *A2*Ei3 - ---*A]l *A2 *A3 *El13 +
8 8
1 -1 -1 2 1 -1 -1
—---*A1 *A2 *A3*BX *E33----*A] *A2 *A3*BX*BY*EI13
16 8
1 2002 1
........................... + --—--*A2 *A3 *El3 + ----*E13)
16 16
1 2 -2 | 2 3 2
+ H6*TH*( ----*A1 *A2 *EI3 +----*A] *A2 *AX *E33-
16 48

87



1 1 -1 1 -1
................. + ----*El13) + TH*( - ---*A1*A2 *EI3 + ---*Al1 *A2*E13 +
16 4 4

1 -2 1 -2 2
- ---¥*A2 *A3*BX*BY*EI3 + ---*A2 *A3*BY *Ell)
3 6

Time: 79317 ms

4.7.4 Fortran subroutine from REDUCE

....................................................

subroutine(x1,y1,x2,y2,x3,y3,x4,y4.e1,e2,e3,e4,e5,e6,th,ske)
implicit real*8(a-h,0-z)
dimension ske(8,8)
ax=(x1-x2+x3-x4)/4.
bx=(-x1+x2+x3-x4)/4.
ay=(yl-y2+y3-y4)/4.
by=(-y 1+y2+y3-y4)/4.
cx=(-x1-x2+x3+x4)/4.
cy=(-y1-y2+y3+y4)/4.
al=-ax*cy+ay*cx
a2=ax*by-ay*bx
a3=-bx*cy+by*cx
hl=log(al**2-al*a2+al*a3)
h2=log(-al**2-al*a2+al*a3)
h3=log(al+a2+a3)
hd=log(-al+a2+a3)
h5=log(al-a2+a3)
h6=log(-al-a2+a3)
ANS14=1/4*A1*¥*(-3)*A3**2¥AY*CXFE13-1/8% A 1 ¥*(-3)*A3**2
CXAY*CY*ELL-1/16*A1#*(-3)* A3¥¥2*CX**2*E33+ 1/8*A 1 **(-3
)*AZRR2XCX*CY*E13-1/16¥A 1 ¥*(-3)*A3%*Q*CY**22E] |-1/16
CXA*X(L2)*A3**XE]3+1/16¥E13

ANS1=H1*TH*ANS2

ANS28=-1/4* A 1**¥(-3)*A3*¥*2*AY *CX*XE13+ 1/8* A 1 ¥¥(-3)XA3%*
C2XAY*CY*ELL+1/16* A 1¥*(-3)¥A3** 23 CX¥*2*E33-1/8* A 1 ¥¥(

L -3)*A3¥R2XCX*CY*E13+1/16%¥A1*%(-3)*A3%*22CY **22E ) 1+ 1/
. LO*A2¥*(-2)*A3**2*E13-1/16*E13

ANS15=H2*TH*ANS16
ANSA8=1/8%A2¥*(-3)*A3**2XBX*BY*E |3- 1/ |6* A2X*¥(-3)X A 3% *
L 2¥BY**2*E 1]

ANS29=H3*TH*ANS30
ANS68=-1/16¥A2*¥*(-3)* A3$¥2XBX #*2¥E33 4+ ] /B¥A2¥X(-3)* A3

88

C-2



. ¥¥2¥BX*BY*E13-1/16¥A2%*(-3)*A3**2*BY **2*E1 1

ANS49=H4*TH*ANS50

ANS75=1/16% A2*¥(-3) ¥ AZ*¥*2¥ AX¥*2¥E33.]/B¥A2%*(-3)¥A3**

L 2XAX*AY*E13+1/8%A2**(-3)¥A3*¥*2* AX*BX*E33+1/16*A2**(
L-3)KABXRQXAY¥XDXE] 1-1/4¥A2%*(-3)*¥A3*¥*2*AY*BX*E13+1/8
L RADXK(B)KAZKXDXAYXBYXE] [ +1/16¥A2¥*¥(-3)¥ A3**¥2¥BX * XD *
. E33-1/8%A2*%*(-3)*A3**2*BX*BY ¥*E13+1/16*A2**(-3)*A3**2

. *BY**2*E11-1/16*E13

ANS69=H5*TH*ANS70

ANSB2=-3/16* A2**(-2)*A3*BY*CY*E1 1+1/16*A2%*(-3)*A3**2
L KAX**Q¥EZS-/B*¥A2¥*(-3)*¥A3*¥*2¥AX*AY *¥E13+1/8B¥A2%*(-3)
L XABXKQXANKBXKREZZ+1/16%A2X*(-3)FAZX*LXAY ¥*2*E] 1-1/4%
L A2¥¥(3)¥A3** DX AY*BX*E 13+ /8% A2**(-3)¥A3**2*AY *BY *
CEL14+1/16*¥A2%*(-3)* A3**¥2¥BX **¥2*¥E33-]/B* A2**(-3)*A3**2

. *BX*BY*E13+1/16*¥A2%*(-3)¥A3**2¥BY **2*E 1 1+1/16*E13

ANSS83=TH*ANS84
ske(1,1)=ANS 1 +ANS 15+ ANS29+ANS49+ANS69+ANS 76+ ANSS3

return
end

4.8 Significance and conclusion

Some conclusions are drawn and the significance of automatic problem formulation is

discussed as follows :

1. Improving on-line efficiency --- the closed-form solution of the local stiffness matrix
allows us to get a numerical value by simply substituting the global nodal coordinates
into a FORTRAN-code subroutine. This procedure is done in just one step. Of course,
this is faster than the Gauss quadrature rule which usually needs more than one
integration point to get a reasonable solution* . The symbolic template in the nonlinear
numerical analysis also plays the same role. In the case of a large number of elements (or
large dimension size in matrix), the significance in improving on-line efficiency will be

greater.

9

. Increasing the accuracy of solution --- the closed-form solution is an exact solution.

There is no integration error introduced into the evaluation of the stiffness matrix. The

4 Reduce integration is an exception and sometimes results in Hourglass drawback. This
special case is ruled out here.

89



accuracy of the Fourier series approximation can be increased as high as the user
requires. Therefore, the results from using symbolic and algebraic manipulation will be
more precise than those of pure numerical analysis.

3. Free from hand-calculation and typing error --- As the results in the tensor formulation,
denivation of equations of motion and stiffness matrix constructions show, the algebraic
expressions are 0o lengthy to be formulated by hand. Even supposing that they could be
done by hand, it would be so tedious that nobody could guarantee that no mistakes
would be made when trying to key them into the computer. With the use of symbolic
and algebraic manipulation, both difficulties are completely solved. As long as the user
inputs the correct commands, there will not be any question about the correctness of the
results.

4. Simplifying FORTRAN programming --- the numerical values of the local stiffness
matrix can be obtained by simply using the "CALL" command once. This isn't true
when Gauss quadrature integration is employed in the finite element method to evaluate
integration. It is necessary to have a "DO" loop, "CALL" command and multiplications
of various weight coefficients for different integration points. These will complicate the
program and therefore will produce more error sources.

5. Further analysis of symbolic results becomes available --- Sometimes the pre-analysis of
the expressions produced from symbolic and algebraic manipulation will lead to a
dramatic improvement in the incoming numerical analysis. The closed form solution
makes this analysis feasible. For example, suppose that the diagonal terms of global
stiffness matrix need to be more dominant to improve the ill-condition, this can be
achieved by appropriately relocating nodes so that the off-diagonal terms of local
stiffness matrix will be smaller or even vanished. This is the unique advantage that the
numerical method does not possess.
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CHAPTER V

APPLICATION OF SYMBOLIC AND ALGEBRAIC MANIPULATION TO A
MATERIALLY NONLINEAR PROBLEM --- RIGID-PLASTIC RING
COMPRESSION

5.1 Introduction

The application of the finite element method to the rigid plastic problem was originally
devised by Lee and Kobayashi ([1], [2]), and became popular in the last decade. This method
allowed the deformation behavior of metal to be revealed on the computer screen stage by stage
during the process of metal forming. As a consequence, the design techniques of die, and the
manufacturing process were improved. This contribution to the industrial manufacturing field

is recognized to be very significant.

Starting from the principle of virtual work and associating with the normality condition
of plasticity, the theoretical analysis of this method leads to an inequality objective function
with an equality constraint. This equality constrained problem is then changed into an
unconstrained problem by introducing Lagrange multipliers. As the stationary requirement is
reached, the total unconstrained problem can be solved incrementally by the finite element
method and the upper bound solution will satisfy the equilibrium equations, constitutive

equations, compatibility equations, incompressibility constraint, and boundary conditions.

Despite the success of the finite element application to the problem, the formulation of it
is very tedious. Especially when the friction boundary condition is considered, the performance
of integration along the interface surface and the evaluation of the first and second derivatives
with respect to velocity fields is always difficult to obtain by hand. Therefore, unlike the
traditional hand derivation, this chapter will utilize the symbolic and algebraic manipulator
REDUCE to do the job of formulation. The quantities involved in the formulae then can be
made into subroutines symbolically at the the element level to facilitate the global assemblage.

As a result, otherwise intractable tasks become possible and free of errors.
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5.2 Preliminary formulation

Consider a body of volume V with the essential boundary condition , velocity 7 ,
prescribed on surface Sy, and two separated natural boundary conditions , traction £ and
frictional stress - prescribed on Sk and S, respectively [Figure 5.1]. The actual stress and
velocity fields will satisfy the following relationships :

1. Equilibrium conditions :

o, =0 (neglecting body force ) (5.1

Figure 5.1: Configuration of domain and boundary conditions
2. Compatibility and incompressibility conditions:

€, =30, +u, ) (5.2)

Y

£, =0 (5.3)
3. Stress-strain rate relationship
O = g'ré (5.4)

Where
!

e ¥ : deviatoric stress.,

0 and & : effective stress and strain-rate, respectively.

4. Boundary conditions :
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o,.n -F] on S,r

u =U on S

! !

o.n =fj(V,) on S.

Where the relative velocity between die and deforming body is defined as follows
V.=t -a" = V.t

The ¢ here is the unit base vector along die and working piece interface.

With an admissible velocity field # ) » the virtual work principle gives
.. e * A
fo,éav - stF - @'dS + fscf”- (V, +@"yds + fsn(aunl)Ude

The frictional stress f~ is defined as follows and is plotted in Figure 5.2.

f (V)
r

t

mg

-mg : —f-

¥

Figure 5.2 : Plot of frictional stress vs. relative velocity

V, ~
fyr)-_'n*g *mt

r

(5.5)
(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

where the friction factor m is in the range of 0 < m < 1 and g is the yield shear stress. By

considering the normality condition of yield surface

(a; - ou)eu 20
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and inequality equation’

V)P -f (V)9 a0 (5.12)

The equation (5.9) becomes

v oy

fvcre"dv -fs F.ids - fsf‘(V,')- V'ds

zfs.(aun,)UldS +fsef‘( V,)-@'ds (513

All conditions will be met when the left hand side of equation (5.13) reaches the
minimum values with respect to & and satisfies the incompressibility condition of equation
(5.3). Since there is no ambiguity in omitting the asterisk, for the sake of simplicity the
admissible field ° will be denoted as u for the following discussions without any special
note. By introducing the Lagrange multiplier I, the equality constraint equation can be included
into the objective function. The stationary value problem for finite element formulation is

therefore
¥ G [ ~a - , v
?-571; &V -stF @S -fScf(V,) V. ds +j;AsvdV] 0 (5.14)

where ¥ represents the functional inside the square B{ﬁcket. Since the frictional stress is not
differentiable at the point V, =0 [see Figure 5.2], ‘o does not exist and the convergent
solution will not be available for equation (5.14). In order to aovercome this numerical
difficulty, the frictional stress is approximated in terms of arctangent function [see Figure 53]}

"
FV) =—mxg + [(Zytan (—ty)r (5.15)
o a!ﬁ”l

where the arbitrary constant a is several orders less than the die velocity. Its function is to
¢Xaggerate the argument of arctangent to reduce the error between equation (5.15) and equation
(5.10). The equation (5.15) is absorbed into functional by the following inequality6

3 See appendix A for proof.
6See appendix B for proof.
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Figure 5.3 : Arctangent approximation of frictional stress

jjr"f‘-dv, —jj "f‘-dv, sf”(V,)-(V,'-V,) (5.16)

The final form of equation (5.13) is

v
%=j7[faé‘dv -J Fias -/ (j;' fdv,yds + [aé,av =0 (517

;
Speciie
T TR
H L
—

Figure 5.4 : Physical configuration for ring compression problem
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§.3 Matrix method for the ring compression problem

If a specific problem of ring compression is considered [see Figure 5.4], the surface
traction is due to friction force only. Therefore the term for § - integration in equation (5.17)
can be dropped. By the substitution of the following equations to equation (5.17),

r

a -

¢ a0

r ;)

£ 0 —
fml.la az {u}-B*U (5.18)

|1 v

0
. r
Vel 1o 8
.az a’d

. 3. .
£ = xE€, €, (5.19)

the stationary requirement of the functional results in the following nonlinear equation.

5 a(7)
f(%—‘-’-)x x@dV + [UT «K xU xSFav s axg

|
- 3%.-(1'8[:? Fdv,)ds (5.20)

together with an incompressibility constraint equation
*Q =0 (5.2)
where

oK =B *D«B

.Q-fB’ «C dVv

» C: proper matrix such that implies the C € incompressibility condition.
* D : flow matrix.
*U: vector of velocity. It is represented as @ previously.

The derivative part in the second term of equation {5.20) is equal to



IF) 16 50 Y & s 2
U " FW T F9U T FA (5.22)

The first term of (5.22) is dropped for simplicity due to the assumption that & is constant for
the infinitesimal strain change [see References 2]. Physically, & is the current yield strength

(denoted as Y) of the material.
The equations (5.20) and (5.21) are then perturbed by introducing a small velocity

AU into the velocity vector. This gives the following equations :

2

25 . 9,25
_[[;+6U(E)AU]*K*(U+AU)¢1V+A*Q
i’ &
)+ —5(=)AU JaVv
U £

™4 QI

9

+fv(u +AU) *K » (U + AU )=
0P P
- [+ 280y 5.23
oo+ —7AV] (5.23)
and
(5.24)

(U+AUY xQ =0

where

y
cp--fs(jf F dv, yds

is contributed by the friction traction. After neglecting the second and higher order terms, the

equations (5.23) and (5.24) can be combined into the following forms :

(AN Gl ) 1B e
LQ 0 00 OJ99 7 N o'uU o Y 0 2
where
P,=2 {EéK + M —(EIT)IN]} (5.26)
(5.27)

2 k
H8.8=J:{ETK *U —?E}



- 2 2 2 2 . . . o 3.2
3 -;Je,+sz+£9—£,ez—szs - €, 85+ ¥, (5.28)

E, =B *aA (5.29)
Q.- [B cav (5.30)
2%, - £, - ¢,
A
aé" 2 4.81 - 89 - 8,
A4-|= ['(;—e"']-tol-F Zée—ér_éz (53D
3 .
g
K,,~B *D*B (5.32)
1.2k T
Myy=()I7E -K »UJE (5.33)
A=2CTE (5.34)
Nes=E »U xK (5.35)
k =U" %K U (5.36)
®=- [ [f"'lm vg + ()t (—t—m)dV, 1dS (5.37)
sc 7o £z a- Edl ’ '

m, a g are constants for a specific material.

5.4 Finite element analysis

The domain discretization for ring cross section is shown in Figure 5.5. The actual

domain used by finite element analysis is only the upper half of that given in Figure 5.5 due to
the symmetric geometry.

The finite element model contains 96 four-node quadrilateral elements with 117 nodes
in total. For an isoparametric element, the shape functions are

ql-—};}l-s)(l—r) , qz-%-(l+s)(l—t)

a5 = 5(1+s)A+1) L g ta-saen

and
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4

u(s,t)-Zqi *u , v(s, )= iq' *V

4

r(s,t)-zq,.*r, , z(S,l)=}4:q, *Z

iel t =1

Where

* 5, t are natural coordinates.

* r, z are physical coordinates.

» u, v are the velocity components in the r, z direction, respectively.
The subscripts in 7, z, 4, v represent the nodal indices.

The strain rate in axisymmetric case can be expressed in a matrix form as follows :

v.0
|

£ COORDINATE (IN)

-1.0

0.8 1.0 2.0 3.0 1.9

R COORDINATE (1N}

Figure 5.5 : Discretization of ring cross section. Due to the symmetry
of geometry, only the upper half of this cross section is
used for finite element analysis.
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Where
UT-{u
0 0
0 0
B« L
0 0
1 0 0 0O
0 0 0 1
0 0 0O
01 10
The Jacobian is :

The flow matrix is ;

fo v~ o ¥fs
yje © ¥lo o

[

EETS

o]

Whes

S v OO
S O o

o © o
© O uwwe

P
—

~~

=R =l

Wi
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Since bilinear velocity distributions are assumed for four-node quadrilateral element,

the relative velocities along the interface are interpolated as follows :

r-r, r,o-r
vV, = r-rt T =T (5.44)
If die velocity is specified as u'¥=1, then the frictional stress will be

2 -1 Vr ~

F = {m xg *(s)an ()} (5.45)
and

’I 2 -1 Vr

® - [ 1f 'mxg «(Fandv,us (5.46)

5.5 Application of symbolic manipulation

The difficulty of formulating the equations shown in the last paragraph can be eased by
the employment of symbolic and algebraic manipulation. Based on equation (5.25), the original
goal is to make a template form in element level for global assemblage. However, due to the
limitation of memory capacity in hardware systems, the goal is modified to make a template
form for individual entries of equation (5.25) only. There are three kinds of forms produced by
REDUCE:

1. Integrable form --- This is the form which results from the fact that integration can be
performed analytically by REDUCE. The evaluation of equations (5.30) and (5.37)

belongs to this class. There are no natural coordinates in the resultant expressions.

2. Non-integrable form --- The equations (5.26), (5.27) and (5.33), for example, are not
integrable due to the existence of £ , its square and even cubic in the denominator of the
integrands. Moreover, since the resultant expression of £ occupies more than sixteen
pages, the complete integrands of equations (5.26) and (5.27) are not available.
Therefore, the individual form for quantities, such as K, M, N, k and E, are obtained
symbolically, and the summation as well as their integration are carried out numerically

3. Miscellaneous forms --- Other equations which have nothing to do with integration, such
as (5.28), (5.29), (5.31), (5.32), (5.35) and (5.36), are obtained symbolically by matrix

operations.
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The evaluation of % in equation (5.25) requires a number of delicate pre-treatments. It
is necessary to discuss this subject independently here so that the fundamental nature of
symbolic and algebraic manipulation will be revealed. Intuitively, there are three steps to

P
evaluate 5~ They are:

1. Evaluation of the integral with respect to relative velocity V,in (5.37).
2. Evaluation of the integral with respect to interface domain § in (5.37).
3. The results then are differentiated with respect to velocity fields.

Theoretically, there is nothing wrong with the methodology given above. In fact,
REDUCE can only do the first evaluation. The other two are not feasible. Therefore, some pre-
treatments are necessary to make REDUCE work to evaluate the ;-‘,;’-. This will force us to
deviate from the formal methodology given above as follows.

f7Le) d Vo 2 LY.
u, " ou, S.[fo Mg (e (v, IS

--meg 2@ f wn v, 13

--m g+ lan(FH)FS (5.47)

The term % can be evaluated from equation (5.44). Equation (5.47) becomes

x pTy r-r
G =-mag @[ [ i rarde
ul 9 rl i 1
- FEE [ T an G - r e (P (5.48)
1 2 'l 2

Rewnte equation (5.44) into

V,-,_,:r+ ',:_,: = Yr +Z (5.49)

and substitute it in equation (5.48).

%?_ - “t:f,‘f fr z[rztan"(};—r + ) - rzmn"(;r + ) dr (5.50)
1 1

Since REDUCE is still unable to handle equation (5.50), further treatments are required. Let
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W=Lr+i.vr+Z (5.51)

then
dr = <- (5.52)
and equation (5.50) becomes
GDP  -aemeg (Mrw -z -1 _w-2) -1
G = fwl[ W= Sy an W AW (5.53)

Note that the upper and lower limits of integration are changed. Starting from this
point, REDUCE can proceed by itself. The tasks it performs in this specific problem include
the integration and back substitution of the variables. The other quantity, such as :,,_i etc., can
be calculated in the similar manner. The second derivatives are simply computed by
differentiation of the results of the first derivatives. The REDUCE program and a part of

fortran solution are presented as follows.

%REDUCE program to calculate friction part and its denvatives

fpmm mmmm e m e mmm e o mm e e e e

OFF EXP;
AL=INT(ATAN(W)*(W-ZP)**2/YP-ATAN(W)*(W-ZP)*R2, W)*4*TM*TK/((R1-
R2)*YP**2);

A2:=INT(ATAN(W)*R1*(W-ZP)-ATAN(W)*(W-ZP)**2/Y P, W)*4*TM*TK/((R1-
R2)*YP**2); ‘

LET YP=(U1-U2)/(A*(R1-R2)),ZP=(R1*U2-R2*U1)/(A*(R1-R2));

LET LOG((A**2+U2**2)/A**2)-LOG((A**2+U1**2)/A**2)
=LOG((A**2+U2**2)/(A**2+U1**2));

OFF EXP;

ON FORT;

OFF ECHO;

CARDNO!*:=10;

OUT "look.ftn";

WRITE

" SUBROUTINE FRIC(U1,U2,A,TK,TM,R1,R2,B1,B2,B11,B12,B22)";
WRITE" IMPLICIT REAL*8(A-H,0-2)",
B1:=SUB(W=U2/A,A1)-SUB(W=U1/A Al);
B2:=SUB(W=U2/A,A2)-SUB(W=U1/A A2),

B11:=DF(B1,Ul);

B22:=DF(B2,U2);

B12:=DF(B1,U2);

WRITE" RETURN",

WRITE" END";

OFF FORT;

SHUT "look.ftn";

BYE;
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C oo e e m e oo
C The fortran subroutine made by REDUCE for frictional part.
e e e s

SUBROUTINE FRIC(U1,U2,A,TK,TM,R1,R2,B1,B2,B11,B12,B22)
IMPLICIT REAL*8(A-H,0-Z)
ANSA=LOG((A**2+U2*¥*2)/(A**24 U 1 ¥%2))* A*£3%R2*%2.3 *| OG
- ((A**2+U2%*2)/(A**¥2+U1%*2))* A¥R1**2*UJ2%% 243 *LOG((A
L XE2LU*RD)/(A¥*2+U1¥%2))* A*RI*R2*U 1 *U2+3.* LOG((A **2+
- U2*¥R2)/(A**¥2+U 1 ¥%2))* A¥R | *R2*U2%%2.3 *OG((A **2+ 2% *

c D(AX*¥LUT**2)) X AXR2**2* [J | ¥ U2+ A¥R1*#2% U 15#2-6 *A%R ]

XRZFUTRU2+5. % A*RI**2¥U2%* 24+ A*R1*R2*U1#%246 *A*R | *R2*
- UI*U2-7 *A¥RI*R2*¥U2%%2-2 ¥ AXRR** 2% [J | #%242 * ASR2** 2%

L U2%*2

ANS3=-6. *ATAN(U2/A)*A**2*R 1 **¥2%J2+3 *ATAN(U2/A)* A **2*
. RI*R2*U1+9.*ATAN(U2/A)*A**2*¥R1*R2*U2-3 *ATAN(U2/A)*A
L HIDXR2¥ADFUL-3.XATAN(U/A )X A**2*¥R2* %25 J242 * ATAN(U2/
- A)*R1**2*J2%*3.3 * ATAN(U2/A)*RI*R2*U1*U2%*2-ATAN(U2/
- A)*RI*R2*U2**3+3 *ATAN(U2/A)*R2**2* U 1¥U2*¥2-ATAN(U2/
- A)*R2*¥*2XU2**3+LOG((A**2+U2%*2)/(A*¥*2+ U1 *%2)) ¥ A **3

. RI**¥2-2 *LOG((A**2+U2%*2)/(A¥*2+U1%*2))* A*%3*¥R | *R2+

. ANS4
ANS2=6.*ATAN(UI/A)*A**2%¥R [ *%2%[J2.3 *ATAN(U1/A)* A *#2%

- R1*R2*UI-9.*ATAN(U1/A)*A**23R1*R2*U2+3 *ATAN(UI/A)*A
L FE2XR2**¥2¥U1+3 *ATAN(U1/A)*A*#2*R2% %25 J2-2 *ATAN(U1/
- A)*R1**2%U1**346.* ATAN(U/A)*R1#*2% U | #%2*%U2-6.* ATAN(
. UI/A)*R1**2¥U1*U2**2+ATAN(U1/A)*R1*R2%U 1¥*3.3 *ATAN(
- UI/A)*RI*R2*U1**2*U2+6.* ATAN(U1/A)*RI*R2*U 1 ¥ U2 *2+

- ATAN(UL/A)Y*R2%*¥2%U1**3-3 *ATAN(U1/A)*R2*#2% ] | *%2% 2+
. ANS3

ANS=2 *ANS2*TK*TM

B1=ANS1/(3.¥(U1-U2)**3)

ANS1=2 *ANS2*TK*TM
B12=ANS1/(U1-U2)**4
RETURN

END
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5.6 Numerical evaluation and result treatment

The numerical scheme employed is the Newton-Raphson iteration with a displacement
increment of 0.01 in each stage. The initial guesses are slightly modified from the solution of
the elastic ring compression problem. Since the existence of zero velocities in r-direction at
interface nodes will overflow the subroutine FRIC, the problem is modified by assigning a
different small number to the r-component of every relevant node. The question that arises is
how small they should be. According to the experiments, only the numbers which are smaller

than 10°'2 will achieve convergence with this scheme. The convergence criterion used here is
o< 0.00005 .

The boundary conditions are specified at two parts of the boundary :

1. Symmetric boundary condition --- The velocities in z direction [see Figure 5.5] are

specified to be zeros along the z=0 boundary.

2. Die velocity boundary condition --- The velocities at the interface surface between the die

and the working piece are specified as unit per second in the negative z direction.

Numerical integration of non-integrable terms is performed by the 4-point Guass
quadrature rule. The assembly of a global matrix is also done numerically. The equation solver
is the Gauss elimination method, from the IMSL subroutine library.

The deformed configurations for friction factor for m=0.5 and m=0.0 are shown in
Figures 5.6 and 5.7, respectively. As the figures show, the deformed shapes are completely
different for low and high frictional factors. The velocity distributions in the deformed states
are also plotted in Figures 5.8 and 5.9, respectively. The neutral lines in both cases are visible
from pictures. Figures 5.10 and 5.11 also show the effective stress’ distributions for two
cases. As the shapes of elements are distorted, the error increases and the convergence of the
scheme becomes harder. In order to continue the execution, the technique of adaptive mesh
needs to be introduced.

7 The effective stress is defined as

2 2 2 2 2 2 \7
o,=(0;,+0,+0,-0,0,~-0,0,-0,0, +3t,, +3t, + 3r,,)
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CHAPTER VI

APPLICATION OF SYMBOLIC AND ALGEBRAIC MANIPULATION TO THE
PLATE PROBLEM

6.1 Introduction

Although many shell theories exist in literature, there are only two distinct concepts
from which these theories are derived. One takes the three-dimensional body as a starting point
and tries by various means to reduce the problem to the form that can be expressed in a two-
dimensional manifold. This class of theories are called derived theories. The works by W. T.
Koiter, and E. Reissner are in this class. The theory adopted by this study belongs to this
class. The other class of theories consider a shell as a bounded region of some deformable two-
dimensional manifold, and are supplemented by one or more fields of vectors over this
manifold. This class of theories are called direct theories. A. E. Green, P. M. Naghdi, and W.
L. Wainwright worked on this class of shell theories. Since the real shell is a three-dimensional
body, the direct approach has to rely upon some a priori statements.

Despite a large amount of publications using the finite element method to solve plate
and shell problems, none deals with the problems by employing the tool of symbolic and
algebraic manipulation. This is not only due to the late availability of software, but also due to
the capacity limitations existing in the symbolic and algebraic software8 . This chapter outlines
the simple and universal methodology to solve the plate and shell problems, then presents
examples which apply symbolic and al gebraic manipulation to them, and f inally switches to a
numerical method at the point where the symbolic manipulation is stuck by its limitations. As a
consequence of this work, the analytic study of plate and shell problems by computer are
pushed a step further.

8 See next chapter for a detail discussion on the capacity limitation of symbolic and
algebraic manipulation.
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6.2 Preliminary formulation
Stating from the equations of equilibrium in three-dimensional state,
DJa"(u",z)*—P'(u",z)-O (6.1)

Where

-Dj - operator of covariant derivative in 3-D space.

o & 3-D state of stress (i,j=1, 2, 3).

Pl external volume force.

 u®: Gaussian coordinates of surface ( a=1, 2).

* 2 : normal coordinate of surface.

and applying the following Kirchhoff-Love hypothesis to virtual displacements

Ova(u®,2) = (ay - 1d,) * (8v, - 26q,) (6.2)
v, (u®z) = bw (6.3)
where
. Q. component of mixed metric tensor.
. d; : component of mixed curvature tensor.

Here the rotation 8q, is defined as

6q,=d ovP + ow (6.4)

Then, following the lengthy derivations by F. I. Niordson in his Sheil Theory (1], the principle
of virtual work gives

ffD[NwéEd + M7 oK A
- ffo[p"ava +powldA + $[T°0v, + M &, + Qowlds (6.5

Where

116



«NoB. effective membrane stress tensor.

e MB e fective moment tensor.

. dEaB : virtual strain tensor.

. dKaB: virtual bending tensor.

* F% p: effective load components in surface and normal directions, respectively.
* T*: membrane force vector acting on the boundary.

* M®: moment vector acting on the boundary.

* Q : supplemented shear force on the boundary.

* dvg, dw : virtual displacements in plane and transverse directions, respectively.
- drg=¢*Paqg

.« alternate tensor.

Mathematically, the strain tensor EGB and bending tensor Kﬂﬁ are defined as

Ep =i, -a,) (6.6)
Kg=d,- d, (6.7)
where the superscript asterisks indicate the deformed state and can be derived as follows :
U = TPy *Pa *PuP, + 4.4, (6.8)
dg = (:—.)’-[(1+p; +Pla)yd, + D,q, +d; Pey)
~(@"+e7e"q,p, XD, po, - d, q,) (6.9)

The generalized two-dimensional displacement gradient p and its determinant in
equation (6.9) are expressed as :

P =Davﬁ - daﬂw (6.10)

& = det(p,) (6.11)
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After linearization, the strain and bending tensors can be expressed in terms of
displacements as follows :

E =~ ‘;(Davﬂ +Dyva) -d w (6.12)
Y Y Y 4
Kaﬂ ~DaDﬁw +dayDﬁv + dﬁ,Da" +v Dﬁdya ‘d,,,daw (6.13)

Considering the isotropic thin elastic shell for simplicity. The constitutive equations will

be :
N = 200 v)E™ 4 va® £ (6.14)
* . ol -vIK™ 4 va® k) (6.15)

The substitution of the last four equations into equation (6.5) will result in the weak
form which is expressed in terms of displacement vectors. Before applying the finite element
method to solve equation (6.5), a universal methodology is outlined in the next paragraph.

6.3 Methodology for solving shell problem by FEM

After the preparations of mathematical formulation, it is necessary to discretize equation
(6.5) to solve shell problems by FEM. However, as equations (6.12) to (6.15) show, the
calculations of constitutive equations and strain-displacement relations involve the evaluations
of metric, curvature tensors, and covariant derivatives. Moreover, in general, the calculations
of covariant derivatives require the computations of Christoffe] symbols. If a given geometric
domain is complex, these calculations will be tedious. With the help of symbolic and algebraic
manipulation, these tough tasks can be performed by simply giving the parametric equations of
the surface. Here the outline of methodology to solve shell problems is presented as follows :

1 Finding the parametric equations of the middle surface for a given shell.

2 Calculating the Christoffel symbols, the metric and curvature tensors based on the
paramietric equations. If the parametric equations are chosen correctly, the resulting
metric and curvature tensor should obey the integrability condition. In other words, they
should not violate the Coddazzi-Mainardi equations, Gaussian equations and the regular
condition.

3. Substituting the metric, curvature tensors, and Christoffel symbols into constitutive
equations and strain-displacement equations.
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4 Discretizing the variational form of equation (6.5) and solving it by finite element
method.

The above methodology is universal for any shell problems. Different shell geometries
can be solved in the same way by simply feeding appropriate parametric equations into the
symbolic and algebraic manipulator REDUCE. Based on this methodology, an example of
plate problem is shown in the following paragraph.

6.4 Symbolic and algebraic manipulation application to plate problems
6.4.1 Methodology
1 Three parametric equations are chosen as follows :
f1=u1, f2=u2, ?=constant

2 Calculate surface metric, curvature tensors, and Christoffel symbols symbolically. These
calculations are based on their fundamental definitions. given by:

* metric tensor :
a =faf‘ﬂ (6.16)

* curvature tensor :

dg=X'f!, (6.17)

where f 1 f 2 and Xt are surface Gaussian and normal coordinates. They are shown in
Figure 5.2 pictorially, and X'is defined by :

i -:— J ok
X =a e,jkf.lf‘2 (6.18)
* The 2nd kind of Christoffel symbols is defined as:

{ a } 3aw daﬂr 9
8 y “[By.pl=2a”® [ * - 57 (6.19)

The REDUCE program for calculating equations (6.16), (6.17), (6.18) and (6.19) is
presented as follows. The results follow the program.
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Qb*****************************************#******************

% REDUCE PROGRAM FOR CALCULATING METRIC, CURVATURE
% TENSORS & CHRISTOFFEL SYMBOLS

qb***************************************************#********

%INPUTTING THE PARAMETRIC EQUATIONS
=== m e et e e e e e
MATRIX A(2,2),CA(2,2),F(2,3),D(2,2);

ARRAY X(3),C1(2,2,2),€2(2,2,2),N(3),E(3,3,3),U(2);
U(1):=S;

U2):=P;

OFF PERIOD;

X(1):=U(1);

X(2):=U(2);

X(3):=CONSTANT;

FOR I:=1:2 DO FOR J:=1:3 DO
F(1,J):=DF(X(J),U));

FOR ALL T1 LET COS(T 1)**2+SIN(T1)**2=1:

%CALCULATING COVARIANT METRIC TENSOR
L/

FOR M:=1:2 DOFOR N:=1:2 DO

A(MN):=FOR I:=1:3 SUM DF(X(I),U(M))*DF(X(I),U(N));
A=A,

DETA:=DET(A);

F%CALCULATING CONTRAVARIANT METRIC TENSOR
Lo e e e e e e e
FOR L:=1:2 DO FOR M:=1:2 DO

IF L=1 AND M=1 THEN CA(L,M):=A(2,2)/DETA

ELSE IF L NEQ M THEN CA(LM):=-A(M,LYDETA

ELSE CA(L,M):=A(1,1)/DETA;

%CALCULATING THE 1ST & 2ND CHRISTOFFEL SYMBOL
G0~ e e e e et e e e s e
WRITE "THE 2ND CHRISTOFFEL SYMBOL":
FOR L:=1:2 DO FOR M:=1:2 DO FOR N:=1:2 DO
C1(LM,N):=( 1/2)*(DF(A(L,N),U(M))+DF(A(M,N),U(L))
-DF(A(L,M),U(N)));

FOR L:=1:2 DO FOR M:=1:2 DO FOR N:=1:2 DO
<<C2(L,M,N):=FOR I:=1:2 SUM CA(L,[)*C1(M,N,I);

WRITE "C2(",L,"," M, " N,")=",C2(L,M,N)>>:

P CALCULATING ALTERNATING TENSOR E(1,J.K)

G =mmmm e m e e e e e e 2 m st e

FOR I:=1:3 DO FOR J:=1:3 DO FOR K:=1:3 DO

<<IF (I=J OR J=K OR [=K) THEN E(I,J K):=0

ELSEIF (I=1 AND J=2 AND K=3) OR (I=2 AND J=3 AND K=1) OR
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(I=3 AND J=1 AND K=2) THEN E(1,J,K):=1
ELSE E(I,J,K):=-1; WRITE E(I,J,K)>>;

FOR [:=1:3 DO
N(I):=(FOR J:=1:3 SUM FOR K:=1:3 SUM
E(LJK)*F(1,))*F(2,K))/SQRT(DETA);

FOR J:=1:2 DO FOR K:=1:2 DO

D(J,K):=FOR I:=1:3 SUM N(I)*DF(F(J,1),U(K));
FOR ALL T1 CLEAR COS(T 1)**2+SIN(T 1)**2;
FOR ALL T1 LET COS(T 1)**2-1=-SIN(T1)**2;

OFF PERIOD;

OFF ECHO;

OUT "SURFACE";

WRITE " e e "
WRITE " THE COMPONENTS OF METRIC TENSOR ":
WRITE " e "
A=A,

WRITE " comemmmm e e "
WRITE " THE COMPONENTS OF CURVATURE TENSOR":
WRITE " oo "
D:=D:;

WRITE " ce e "

WRITE " THE CHRISTOFFEL SYMBOLS":

WRITE " o "

FORI[:=1:2 DO FOR J:=1:2 DO FOR K:=1:2 DO

WRITE "CHRIS(",1,",",J,"," . K,")=",C2(1,J K);

SHUT "SURFACE";

BYE;

The outputs of REDUCE are presented as follows :

D(1,1):=0



D(1,2):=0
DR2,1):=0
D2,2):=0
THE CHRISTOFFEL SYMBOLS

CHRIS(1,1,1)=0

CHRIS(1,1,2)=0

CHRIS(1,2,1)=0

CHRIS(1,2,2)=0
CHRIS(2,1,1
CHRIS(2,1,2
CHRIS(2,2,1
CHRIS(2,2,2

As the output from REDUCE shows, all of the Christoffel symbols vanish in the plate
case. According to the above solutions, the metric and curvature tensors in matrix form
are

[a,4]= ((l) C") [d,]= (8 3 (6.20)

3. After substituting the calculated metric and curvature tensors, the constitutive equations
are as follows

* For membrane :

Nll 1 0 v Ell
Nl - % 0 1-v Ofp" (6.21)
N 22 v 0 1 E:z

*For bending :
M 1 ] 1 O v Kll
M* 1:1’;’) O 1-v 0ig" (622)
M2 v 0 1 K

The relationships between linearized strain-displacement and bending curvature tensors
are from equations (6.12) and (6.13) :

Eq,-';(D,,v’ +Dﬂva)-§(vﬂ‘a+va.p) (6.23)
Ky=DDpwow (6.24)
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where the disappearance of Christoffel symbols in this case eliminates the distinction
between covariant differentiation and ordinary partial differentiation. In addition, the
unity of the metric tensors remove the distinction between contravariant and covariant
tensors.

4. Finite element method starts (see the following paragraph).
6.4.2 Finite element discretization

The element chosen for this topic is the combination of the constant strain triangle
(CST) element with the Cheung, King, Zienkiewicz (CKZ) triangle element. The
considerations of selecting this element will be discussed later. The shape functions for this
clement are

L,-¢,
Na = ga + Ea‘z::ﬂ (‘Ea - Eﬂ) + Eaé:r(ga - ‘57)
Now =28(c, (5.5, + TEES,) -, (B2, + 26 £ ) (6.25)

Noy = 2816, (5.5, + SEE,8) - b,(508, + Lo )]

Where (a,B,y) is the permutation of (1,2,3) and no summation convention is applied in

equation (6.25). The constants b; c;, and A are defined as follows :

Y-y, RS Y-y,
bl = T3a bz = 2 b3 = "72a

X)-‘I) 11-11 Xz—,ll

—1 ”
€\ =" C, =" C3="1 (6.26)

2A=x2y3—x3yz+x3y1_x|y3+x1yz_xzyl

Then the deflections u, v, w in local coordinates X, ¥, Z direction can be interpolated by

3

u =2ulL‘

1 =]
3

v - 2‘,'L' (6.27)

i =l
™ dw
w =WaNa +;|0Nwr + @—'aNay

The substitution of equations (6.21) to (6.27) into (6.5) gives the discretization form

JJ B DB, +B DB 1A -4 - J[ raa + [ as + S as (6.28)
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Where

v
l’lE_-:'O 1-; 0
v 0 1
1l 0 v
DZ-IZfl"-v)O I-TV 0
v 0 1
r;— 0]
= 0
b, b, b, 0 0 0 ;_ 0
Bl- ¢, ¢, c, bI b2 b3 O’ E
0 0 o ¢, ¢, c, :E_l
ad
O =
J
RN
L, 00 00 L, 0 00
0 L 000 0 L, 00
P ] -
[+ ©
7
= 0
b, b, b, 0 0 0 % 0
Bzacl Cz C3 bl bz b3 Ol ,
0 0 0 ¢ €, ¢ z,
aJ
° =
l
N
J
£,
1 2C1 Cz Ca Pl
M =M M][bl b bJ -
2
%,
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(6.29)
(6.30)
0 L, 000 0
00 L, 0 0 o] (631)
2
gl
b, b, byl,
1 Y2 Uil e
2
é)
N (6.33)



ly y 3 3x 3y
T

d -[ul v, W, ow W, u, v, W, w,, wzy Uy vy ow, W, wly]
(6.34)
r=[F F' pIN (6.35)
S=[" T qIN (6.36)

L 0 0 0 0 L, 00 0 0 L, 0 0O 0 0

N_OLIOOOOLZO OOOL30 0 0
0 0 N, le Iy 0O 0 N2 Nh Nzy 0 0 N, N, N3y
(6.37)

6.4.3 Numerical results and post-process

Three boundary conditions are applied to the test problem. They are :

1. In-plane uniaxial tension [see Figure 6.1] --- In this case, only the membrane component
contribute to the stiffness matrix. The consistent load vector is due to the boundary
traction S only. The REDUCE programs to the stiffness and the consistent load vector

are presented as follows. In addition, the stress distribution can also be calculated
symbolically.

lg——10cm ——ﬁ
S —>
FEM domain :
+— \ —
<+ —>
+— —>
<+ —
<4— —>
Figure 6.1: Plate with hole under uniform uniaxial tension load
100 N/cm**2
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% Symbolical program for making stiffness matrix for plate tension problem
qb***********************************************************
matrix bc(3,6),In(6,15),d(3,3),b(3,15),5(15,15);
array n(3);

n(1):=s1;n(2):=s2;n(3):=s3;
In(1,1):=1;In(2,6):=1;In(3,11):=1;In(4,2):=1;
In(5,7):=1;In(6,12):=1;
bc:=mat((b1,b2,b3,0,0,0),(c1,c2,c3,b1,b2,b3),(0,0,0,c1,c2,c3));
d:=mat((1,0,v),(0,(1-v)/2,0),(v,0,1));

b:=bc*In;

s:=tp(b)*d*b*pj*ye*h/(2*(1-v**2));
b1:=(y2-y3)/pj;b2:=(y3-y1)/pj;b3:=(y1-y2)/pj;
cl:=(x3-x2)/pj;c2:=(x1-x3)/pj;c3:=(x2-x1)/pj;

for 1:=1:15 do <<a:=for j:=1:15 sum s(1,));write a>>;
for 1:=1:15 do <<c:=for j:=1:15 sum s(j,1);write c>>;
on fort;

off penod,

off echo;

out "plane.ftn";

write " subroutine ske(x1,y1,x2,y2,x3,y3,s)";
write " dimension s(15,15)";

write " implicit real*8(a-h,0-z)";

write " pj=(x1-x3)*(y2-y3)-(yl-y3)*(x2-x3)";
write " ye=2.1*1.0e07";

write " v=0.29";

write "  h=0.2";

fori:=1:15do for j;=1:15do

if j>=i then write " s(".1,""J,")=",s(i,})

Clse Wnte " S(",i,",",j,“)=S(",j,",",i,")";

write " return";

wnte "  end";

shut "plane.ftn";

bye;

TpeXEXKEXKRREKKRKEKKKKRKERKKKKERKKREKEEKRRKRKRKKKLRRRR KKK LK KX

% Symbolic program to calculate the load vector for plate tension problem.
%**************************************************#****#*
matnix f(1,2),sn(2,15),fn(15,1);

array n(3),ff(15);

n(1):=sl;n(2):=s2;n(3):=s3;

f:=mat((f1,12));

for 1:=1 step 5 until 11 do <<sn(1,i):=n((i-1)/5+1);
sn(2,i+1):=n((i-1)/5+1)>>;

fn:=tp(f*sn);

s2:=0;

s3:=1-s1;

fori:=1:15 do <<al:=int(fn(i,1),s1);a2:=sub(s1=1,al)-sub(s1=0,al);
fn(i,1):=a2*rl*h>>;

for 1:=1;15 do ff(i):=fn(1,1);

on fort;

off echo;

off peniod,;
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out "15load.ftn";

write " subroutine load(x1,y1,x2,y2,x3,y3,f1,{2,{3.fe)";
write " implicit real*8(a-h,0-z)";

write "  dimension fe(15)";

write " rl=sqrti((x1-x3)*¥*2+(y1-y3)**2)";

write " h=0.2";

fori:=1:15do write " fe(",i,")=",ff(1);

write"  return";
write"  end";
shut "15load.ftn":
bye;

¥ % K% K K 3 K K K K KK 3K K 3K oK o 3K K 3K 3K o oK ok ok ok ok ok ok ok ok ok kK kK K

% REDUCE program to construct subroutine to compute

% stress distribution for plate tension problem.
q@*******************************************

matrix d(3,3),bc(3,6),n(6,1),stre(3,1);

array n(3);

n(1):=s1;n(2):=s2;n(3):=53;
be:=mat((b1,b2,b3,0,0,0),(c1,c2,c3,b1,b2,b3),(0,0,0,c1,c2,c3));
d:=mat((1,0,v),(0,(1-v)/2,0),(v,0,1));

operator u;

for i:=1:6 do fn(i,1):=u(i);

stre:=d*bc*fn*ye/(1-v¥*2);
bl:=(y2-y3)/p);b2:=(y3-y1)/pj;b3:=(y L-y2)/pj;
cl:=(x3-x2)/pj;c2:=(x 1-x3)/pj;c3:=(x2-x1)/pj;

on fort;

off echo;

off period;

out "st.ftn";

write " subroutine stress(x1,y1,x2,y2,x3,y3,u,st)";
write " implicit real*8(a-h,0-z)";

write " dimension u(6),st(3)";

write " v=0.29";

write " pj=(x1-x3)*(y2-y3)-(y1l-y3)*(x2-x3)";
write " ye=2.1*1.0e07";

fori:=1:3dowrite"  st(",i,")="stre(i,1);
write"  return";

write "  end";

shut "st.ftn";

bye;

The resultant fortran subroutines obtained from the above programs to compute stiffness

matrix, load vector and stress cistribution are presented as follows. Since the expression

of stiffness matrix is quite lengthy, only a part of it is showed. The interested

researchers may refer to the PH. D. thesis of Wen-Lang Tsai [51] for details.

SUBROUTINE SKE(X1,Y1,X2,Y2,X3,Y3,S)
IMPLICIT REAL*8(a-h,0-z)

DIMENSION 5(15,15)

pI=(x1-x3)*(y2-y3)-(y 1-y3)*(x2-x3)
YE=2.1*1.0E07
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v=0.29

H=0.2
S(LD=(H*YE*(V*X2¥*2-2* V¥ X2*¥ X34 V¥ X3**¥2.X2**D 4 2% X 2%

c X3-X3¥*2-2FY2¥X244X¥Y 2*Y3-2* Y 3%%2))/(4*PJ* (V**2-1))
S(1,2)=(H*YE*(V*X2*Y2-V*X2*Y3.V*X3*Y 2+ V*X3*Y34+X2*Y2-
. X2*¥Y3-X3*Y2+X3*Y3))/(4*PJ*(V**2-1))

s(1,3)=0

s(1,4)=0

s(1,5)=0
S(1,6)=-(H*YE*(V*X 1*X2-V*X 1*X3-V*X2* X3+ V*X3*%*2.X 1 *X?2
CHXT*XB4+X2¥X3-X3¥*¥242XY 2*¥Y3-2¥Y 2%Y | .2*¥Y3*¥¥D42%Y3%Y |)
)(A*¥PI*¥(V*%2.1))
S(1,7)=-(H*YE*(2*V*X1*Y2-2*V*X [ *Y34+V*X2*Y3-VXX2%Y ].2

CXVEXI*Y 2+ VEXI*Y3+VEX3*Y [-X2*¥Y34+X2¥Y 14X3*Y3-X3*Y 1))
L I(4*PI*(V**x2.1))

s(1,8)=0

s(1,9)=0

s(1,10)=0

s(LIN=(H*YE*(V*X1*X2-V*X 1*X3-V*X2%*24 V*X2*X3.X 1*¥X?2
C+X1*¥X3+ X6 KI¥KF42XY 2**¥2-2XY 2%¥Y 3.2XY 2%Y [42%¥Y3*Y )
)/(A*PIX(V*%2.1))
S(LI2)=(H*YE*(2*V*X1*¥Y2- 2% VX*X | *Y3-V*X2*Y 24 2% V*X2*Y 3
C-VEXDXY 1-VEXB*¥Y 24 VAX3*Y |-X2*¥Y 2+ X2*Y 1+X3*Y2-X3*Y 1))
J(4*PI*(V*%2-1))

s(1,13)=0

s(1,14)=0

s(1,15)=0

s(2,1)=s(1,2)
S(2,2)=(H¥*YE*(V*Y2**2.2%¥V*Y2*¥Y34 VXY 3* %2 DX XD* %21 4% X2
 ¥X3-2¥XBRAD-Y2RR242*Y 2*Y 3-Y 3*%2))/(4*¥PI*(V*%2-1))
$(2,3)=0

$(2,4)=0

s(2,5)=0
S(2,0)=(H*YE*(V*X1*Y2-V¥X 1¥Y342* V¥ X2*Y3.2¥ V¥ X2%Y | .V*
CX3*Y2-VEX3*Y342¥VHX3*Y [-X1*¥Y 2+ X 1¥Y3+X3*Y2-X3*Y3))
A(4*PI*(V**%2-1))

SR N=(H*YEX*(V*Y2*Y3-V*Y2*Y |- V¥Y3** 2L V*Y3XY | 2% X | *
c X2-2¥X1*X3-2¥X2¥ X342%X3*¥*2-Y2*Y3+Y 2*Y 1+Y3**2-Y3*Y 1))
. [(4*PJ*(V*%2.1))

s(2,8)=0

$(2,9)=0

s(2,10)=0

S(2,11)=-(H*YE*(V*X1*Y2-V*X | *Y3+V*X2*Y 24+ V*¥X2*Y3.2* V¥
- X2*Y 1-2¥VEX3*Y24 2% VEX3*Y 1-X1*Y 24X 1*¥Y3+X2*Y 2-X2* Y 3))
. [(4*PJ*(V**2-1))
$(2,12)=-(H*YE*(V*Y2**¥2.V*Y25Y3-V*Y2*Y [+ V*Y3*Y 1 4+2*X ]
CEX2-2¥X1*X3-2% X 2% %24 2% X 2% X3-Y 2% %24+ Y 2*¥Y3+Y2*Y 1-Y3*Y ]
. D/(4*¥PI*(V*%2.1))

s(15,15)=0
return
end
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subroutine load(x1,y1,x2,y2,x3,y3,f1,f2 fe)
IMPLICIT REAL*8(a-h,0-2)
dimension fe(15)
rl=sqri((x3-x2)**2+(y3-y2)**2)
h=0.2

fe(1)=0

fe(2)=0

fe(3)=0

fe(4)=0

fe(5)=0

fe(6)=(H*F1*RL)/2
fe(7)=(H*F2*RL)/2

fe(8)=0

fe(9)=0

fe(10)=0
fe(11)=(H*F1*RL)/2
fe(12)=(H*F2*RL)/2
fe(13)=0

fe(14)=0

fe(15)=0

return

end

subroutine stress(x1,y1,x2,y2,x3,y3,u,st)

implicit real*8(a-h,o0-z)

dimenston u(6),st(3)

v=0.29

PI=(X1-X3)*(y2-y3)-(y1-y3)*(x2-x3)

YE=2.1¥1.0E07

st(1)=(YE*(U(6)*V*X1-U(6)*V*X2-U(5)*V*X 1+U(5)*V*X3+U
(AFVEX2-UA)*V*X3+U(3)*Y2-UB)*Y 1-U(R)*Y3+U(R)*Y 1-
SUD*Y 24U *Y 3))/(PI*¥(V**2-1))
st(2)=-(YE*(U(6)*V*Y2-U(6)*V*Y 1-U(6)*Y 2+U(6)*Y 1-U(5)
CXVXY3+US)*VFY 1+U(S)*Y3-U(S)*Y 1-U(4)*V*Y 2+ U(4)* V*Y 3
AU@*Y2-UD)*Y3+U3)*V*X 1-U(3)*V*X2-U(3)*X1+U3)*
CX2-UR*V*X1+U(2)*V*X3+U(2)* X 1-U(2)*X3+U(1)* V*X2-U(
CD*FVEX3-U(1)*X2+U(1)*X3))/(2*¥PJ*(V**2-1))

st(3)=(Y E*(U(6)*X1-U(6)*X2-U(5)*X 1+U(5)*X3+U(4)*X2-U
A(*XB+UQB)*V*Y2-UGB)*V*Y 1-U(2)*V*Y3+UR)*V*Y 1-U(1)
. XVXY 24 U(1)*V¥Y3))/(PI*(V**2-1))

return

end

The stress distribution of plate under tension is plotted by PATRAN in Figure 6.2. The
stress concentration is visible in the top of the hole. One interesting phenomenon that
should be mentioned here is that the stress at the middle top of the plate is less than the
applied load. This is contributed by the bending effect which produces the compression
in the top fiber of the plate.
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2. Four-edge simply supported plate bending with uniform transverse load [see Figure
6.3] --- In this case, the membrane component of stiffness matrix is neglected. The
REDUCE program to make the bending component of stiffness matrix is shown as
follows :

Qb****************************************************************

% REDUCE program for constructing plate bending stiffness matrix

qb****************************************************************

array n(9);

matrix sn(3,9),bc(2,3),bn(2,9),ssn(6,9),bcbc(3,6),bssn(3,9),d(3,3) ,5ke(9,9),5(9,9);

n( 1):=sl+sl*s2*(s1-s2)+s1*s3*(sl-s3);

n(2):=pj*(c3*(sl**2*s2+s1*s2*s3/2)-02*(sl**2*s3+sl*32*83/2));

n(3)::pj*(b2*(s1**2*53+sl*s2*s3/2)-b3*(sl**2*s2+sl*s2*s3/2));

n(4):=s2+s2*s3*(s2-s3)+s2*s1*(32-5 1);

n(S)::pj*(cl*(sZ**2*s3+s1*s2*s3/2)-c3*(s2**2*sl+sl*82*53/2));

n(6):=pj*(b3*(s2**2*sl+s1*s2*s3/2)-bl*(s2**2*s3+s1*52*33/2));

n(7)::sB+s3*sl*(s3-s1)+s3*32*(s3-s2);

n(8):=pj*(c2*(s3**2*sl+s1*s2*s3/2)-cl*(s3**2*s2+sl*s2*s3/2));

n(9):=pj*(bl*(s3**2*32+s1*52*53/2)-b2*(s3**2*s1+sl*s2*s3/2));

for i:=1:9 do <<sn( 1,i):=df(n(i),sl);sn(2,i):=df(n(i),52);

sn(3,1):=df(n(i),s3)>>;

bc:=mat((bl,b2,b3),(cl,02,03));

bn:=bc*sn;

fori:=1:9 do <<ssn(l,i)::df(bn(1,i),s1);ssn(2,i):=df(bn(l,i),SZ);
ssn(3,1):=df (bn( l,i),s3);ssn(4,i)::df(bn(2,i),sl);
ssn(5,i):=df(bn(2,i),52);ssn((),i):=df(bn(2,i),s3)>>;

s3:=1-s1-s2;

bcbc::mat((bl,b2,b3,0,0,0),(c1,cZ,c3,bl,b2,b3),(0,0,0,c1,c2,c3));

bssn:=bcbc*ssn;

D:=MAT((1,0,V),(0,( 1-V)/2,0),(V,0,1));

ske:=tp(bssn)*d*bssn*pj$

for i:=1:9 do for j:=1:9 do

if j>=i then <<tem:=int(ske(1,j),s2);

tem1:=sub(s2=l-sl,tem)-sub(52=0,tem);

tem3:=int(tem1,s1);

s(i,j)::(sub(s1:1,tem3)-sub(s1=O,tem3))*ye*h**3/(12*(1- V¥¥2))>>

else s(i,))=s(j,i);

bL:=(y2-y3)/pj;b2:=(y3-y1)/pj:b3:=(y 1-y2)/pj;

cl:=(x3-x2)/pj;c2:=(x1-x3)/pj ,c3:=(x2-x1)/pj;

on fort;

off echo;

off period;

CARDNO!*:=10;

out "z.ftn";

WRITE " SUBROUTINE SKEI(X1,Y1,X2,Y2,X3,Y3,S)";

WRITE" IMPLICIT REAL*8(A-H,0-2)";

WRITE"  DIMENSION S(2,9)":

WRITE"  pj=(x1-x3)*(y2-y3)-(y1-y3)¥(x2-3)";

WRITE"  YE=2.1*1.0E07";

WRITE"  V=0.20":

WRITE" H=0.2":

FOR I:=1:2 DO FOR [}:=1:9 DO
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IF j>=t THEN WRITE"  S(".1,",".,J,")=",S(1,J)
ELSE WRITE " S(”,I,",",J,")=S(",J,",“,I,")";

WRITE" RETURN";

WRITE" END";

WRITE"  SUBROUTINE SKE2(X1,Y1,X2,Y2,X3,Y3,S)";

WRITE" IMPLICIT REAL*8(A-H,0-Z)";

WRITE" DIMENSION §(4,9),s1(2,9)";

WRITE"  pj=(x1-x3)*(y2-y3)-(y1-y3)*(x2-x3)";

WRITE"  YE=2.1*1.0E07";

WRITE"  V=0.29";

WRITE" H=0.2";

WRITE" CALL SKEIl(X1,Y1,X2,Y2,X3,Y3,S1)";

WRITE" DO 201=1,2"

WRITE" DO?20J=1,9";

WRITE " 20 S(I,)=S1(1.))";

FOR I:=3:4 DO FOR J:=1:9 DO

IF j>=1 THEN WRITE"  S(".1,",".J,")=",5(1,J)
ELSE WRITE " S(",I,",",J,")=S(",J,",",I,")";

WRITE" RETURN",

WRITE" END"; '

WRITE"  SUBROUTINE SKE3(X1,Y1,X2,Y2,X3,Y3,5)";

WRITE" IMPLICIT REAL*8(A-H,0-Z)";

WRITE"  DIMENSION §(6,9),5s2(4,9)";

WRITE"  pi=(x | 3)*(y2-43)-(y1-y3)*(x2-3)"

WRITE" YE=2.1*1.0E07";

WRITE" V=0.29";

WRITE" H=0.2"

WRITE" CALL SKE2(X1,Y1,X2,Y2,X3,Y3,S2)";

WRITE" DO20I=1,4";

WRITE" DO20J=1,9";

WRITE " 20 S(1,J)=S2(L,J)";

FOR I:=5:6 DO FOR J:=1:9 DO

IF j>=t THEN WRITE"  S(".I,",".J,")=",S(1,J)
ELSE WRITE " S(",[,",",J,“)'—'S(",J,",",I,")";

WRITE" RETURN";

WRITE" END";

WRITE"  SUBROUTINE SKE(X1,Y1,X2,Y2,X3,Y3,S)";

WRITE"  IMPLICIT REAL*8(A-H,0-Z)";

WRITE"  DIMENSION S(9,9),53(6,9)";

WRITE"  pj=(x1- x3)*(y2 y3) (y1-y3)*(x2-x3)";

WRITE" YE=2.1*1.0E07

WRITE"  V=0.29";

WRITE" H=0.2",

WRITE"  CALL SKE3(X1,Y1,X2,Y2,X3,Y3,83)";

WRITE" DO?20I=1,6"

WRITE" DO20J=1,9";

WRITE " 20 S(1,J)=83(1,J)";

FOR [:=7:9 DO FOR J:=1:9 DO

[F j>=1 THEN WRITE " S(",L","J,M="S(1,J)
ELSE WRITE " S M=8¢" 1L

WRITE" RETURN";

WRITE" END";

SHUT "z.{tn";

bye;



The resultant fortran subroutine is too large (around 135 pages) to be presented
completely here. The following is only a small portion of it.

SUBROUTINE SKE1(X1,Y1,X2,Y2,X3,Y3,S)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION §(1,9)

pI=(x1-x3)*(y2-y3)-(y 1-y3)*(x2-x3)

YE=2.1*1.0E07

V=0.29

H=0.2

ANSS5=-4*¥Y3¥Y | **312%Y [**4
ANS4=-4¥X¥XDXY XY | +8¥ X D* ¥ QXY 3H KDL DX X DXXDKY [ X%D_ |Gk
- X2¥X3**3. | 6* X2*¥ X 3*Y 2% *D 430+ X DX X3*Y QXY 3. 6*¥X2¥X 3%V 3
L ¥RQLSHXBHRALBX K IXRDRY DXXD_ | G*X3KXDXY DXY 34 |0k X 3K ¥ 0%

L Y3XXDARYBRADXYHY | 42X XIHRDKY | $XDLGHY DRKQ | G¥Y D¥*3x
- Y3-AXY2¥RIRY [ D4RY DRKDKY IHRD LG Y DRRDRY | X%D_ | GXY Y3
L FRB-LRY XY [ XKL SKY THXL4HY 3XATHY | LG*Y IRKOKY [ K%0 4

. ANS5

ANS3=2* X1 **4-4* X | ¥*3% X2 4% X | ¥*¥3% X346% X | ¥X 2k X 2% L 6%
L XT*¥2EXZRAD LR ¥RDHY QXKD _A* X | KXDXY XY | 42X X | ¥¥24Y3
L XEDARK[RHDXYIXY |4 4% X | ¥*DKY [ *XD_4X X | XX D*K3 4% X | XX D
CY2HREDLBIN NN DKY DY |-4* X | ¥ X2XY [ ¥%2 4% X [ X X3**3_4%X | *
- XB¥YI*AD4BXX | ¥ X3HYIHY |- 4% X | X X3*Y | ¥*D4 5% X 2%* 4 | 6% X2
L KXBEXBH24¥X* KKK THH D | QR X 2K KXY 2K KD | G X 2X XX Y 2% Y3
. +ANS4

ANS2=H**3*YE*ANS3

ANSI=ANS2/(18*PJ**3%(V*%2_1))

S(1,1)= -ANS1
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Figure 6.3 : Physical configuration of plate bending problem

The load vector in this case is for a uniform transverse pressure only. The REDUCE

program and its output are shown as follows :

%***********************************************

% REDUCE program to construct the load vector
% for plate bending problem.

%*****************************#*****************

array n(9),

fe(9);

n(1):=sl+s1*s2*(s1-s2)+s1*¥s3*(s1-53);

- n(2):=pj*(c3*(s1**2*s2451%52%53/2)-c2*¥(s 1 **2* 53451 *52%s3/2));

n(3):=pj*(b2*(s1**2*s3+sl*s2*s3/2)—b3*(s 1%¥%¥2*52+51*52*53/2));
n(4):=s2+52*s3*(s2-53)+s2*s1*(s2-s1);
n(5):=pj*(cl*(s2**2*s3+s1 *¥52*53/2)-c3*(52**2*51+51*52%53/2));
n(6):=pj*(b3*(s2**2*s1+51*52*53/2)-b1¥(s2**2*s3+s1 *$2%53/2));
n(7):=s3+s3*s1*(s3-51)+s3*s2*(53-52);
n(8):=pj*(c2*(s3**2*51+51*52*%53/2)-c| *(s3**2*s2+5] ¥52%53/2));

n(9):=pj*(

bl*(s3*#2*

s3:=1-s1-s2;
for 1:=1:9 do <<tem 1:=int(n(i),s2);
tem2:=sub(s2=1-s1,tem1)-sub(s2=0,tem 1);
tem3:=int(tem2,s1);
fe(i)::(sub(sl=1,tem3)-sub(s1=O,tem3))*pj*f3;
write i,fe(i)>>;
b1:=(y2-y3)/pj;b2:=(y3-y1)/pj;b3:=(y 1-y2)/pj;
cL:=(x3-x2)/pj;c2:=(x1-x3)/p};c3:=(x2-x1)/pj;

off period;

s2+s1"‘s2*s3/2)-b2*(33**2*sl+s1*s2*s3/2));
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3.

off echo;
ON FORT;

out "zload.ftn";

write "  SUBROUTINE LOAD(XI,Y1,X2,Y2,X3,Y3,F‘3,FE)";
write "  IMPLICIT REAL*8(A-H,O-Z)";
WRITE" DIMENSION FE(9)";

write " pj:(x1~x3)*(y2-y3)-(y1-y3)*(x2-x3)";
FOR I:=1:9DO WRITE * FE(",1,")=",FE(]);
WRITE " RETURN";

write "  end":

shut "zload.fi tn";

bye;

SUBROUTINE LOAD(X1,Y 1,X2,Y2,X3,Y3,F3,FE)
IMPLICIT REAL*8(A-H,O—Z)
DIMENSION FE(9)
PI=(X1-X3)*(y2-y3)-(y 1-y3)%(x2-x3)
FE(1)=(PJ*F3)/6
FE(2)=-(PJ*F3*(2*X1-X2-X3))/48
FE(3)=(PJ*F3*(Y2+Y3-2*Y1))/48
FE(4)=(PJ*F3)/6
FE(S):(PJ*F‘B*(X1-2*X2+X3))/48
FE(6)=-(PJ*F3*(2*Y2.Y3.Y 1))/48
FE(7)=(PJ*F3)/6
FE(8)=(PJ*F3*(X1+X2-2*X3))/48
FE(9)=(PJ*F3*(Y2-2*Y3+YI))/48
RETURN

end

The deformed shape is shown in Figure 6.4 and the stress distribution pattern is in
Figure 6.5. In addition, three different sizes of mesh are tested to investigate the
convergence of solution. They are shown in Figure 6.6. The convergence trend is
presented in Figure 6.7 which is the plot of error vs. element mesh size.

Four-edge clamped plate bending under uniform load --- the only difference between this
case and the last case is the boundary constraints. The extra slope constraints are
enforced in the edges in this case. Therefore it is expected that the solution will be stiffer
than that of the simply-supported case. The deformed shape is shown in Fi gure 6.8. The
stiffer phenomenon is visible by comparing Figures 6.4 and 6.8.
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Figure 6.6 : Three different sizes of mesh for testing the convergence
of solution of plate bending

2 3 .
mesh size -
Figure 6.7 : Convergence of plate bending solution
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7.1

CHAPTER VI

CONCLUSIONS

Introduction

The topics discussed in this chapter include the advantages of using symbolic and

algebraic manipulation, the difficulties existing in running symbolic and algebraic software, the

SAM in education, contributions, and the prospect of future development and application,

Simple examples will be presented to illustrate the points where necessary.

7.2 Advantages of symbolic and algebraic manipulation

There are many advantages of application of symbolic and algebraic manipulation. They

can be classified as follows :

1.

[

Tireless power--- Together with human intelligence, the tireless capability in
manipulating symbols and numbers has made SAM an indispensable tool in modern
computational community. It has created the potential to challenge both previously
intractable problems and new sophisticated formulae. Due to this advantage, the
analytical work is pushed forward.

. Accuracy --- A solution obtained by symbolic and al gebraic manipulation is always

exact. There is no round-off error accumulation.

- Reliability --- The resultant expressions obtained by symbolic and algebraic manipulation

will be correct if the input information is right. In addition, the capability of automatic
code generation eliminates any typographic errors and substantially reduces the time in

debugging the programs.

. Efficiency --- This is a new advantage found in this research. The symbolic template in

nonlinear numerical analysis can significantly improve the efficiency of program

execution. This advantage is believed to be a crucial solution in the future for fields in
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which the development time plays an important role. For example, the real time control
will be one of them.

7.3 Internal swelling and mathematical limitations

As mentioned in the last chapters, there are some difficulties existing in the symbolic
and algebraic manipulation. The followings are the detail discussions :

1. Memory capacity limitation --- A large amount of memory space is required for symbolic
and algebraic manipulation. This is one of its fundamental limitations. The amount of
memory space needed for running a symbolic and algebraic manipulator varies a lot from
one system (hardware and software) to another. Different software systems need
different sizes of memory space, and different hardware systems may provide different
amounts of memory space for the same software. Even the same software running in the
same hardware system sometimes may need different memory spaces depending on
whether external packages are connected or not. For example, 834560 bytes RAM
(about 815 K bytes) are currently provided (Fall,1989) for running REDUCE in the
Michigan Terminal System (MTS) when it is invoked. If integration performance is
involved in the computation, the external integration package should be manually
included and the memory space will be extended to 1048560 bytes (about 1 mega bytes).
The total memory space that MTS can provide during the computation is up to seven
mega bytes. On the other hand, three mega bytes are provided to run REDUCE in an
Apollo Domain workstation at the Computer Aided Engineering Network (CAEN) of
The University of Michigan. Unlike MTS, this space can be automatically extended up
to six mega bytes during execution if necessary. When the space requirement is beyond
the provisions of hardware, execution will be aborted automatically. Therefore it is
recommended that the symbolic and algebraic manipulator be implemented on a machine
with at least one mega bytes RAM capacity to guarantee a safe execution.

To demonstrate the mechanism of internal swell in symbolic and algebraic manipulation,
an example is given to calculate the factorial of a number. Mathematically, a factorial is
defined as :

\ 1 fn=0;
= nm -1 otherwise . (7.1)

The LISP function for this problem is as follows :

146



(defun factorial (n)
(if (=n0)
1
(* n (factonal (1- n)))))

When the function is called to calculate the factorial of four, the building process will
occur first and then the collapsing process follows? .

(factorial 4) -> (* 4 (factorial 3))
> (* 4 (* 3 (factorial 2)))
> (* 4 (* 3 (* 2 (factorial 1))))
> (¥4 (* 3 (* 2 (* 1 (factorial 0)))))
> (A3 (*X2(*1 1))
> (¥4 (*3(*21))
> (*4(*32))
> (*46)
> 24

The internal swelling phenomenon occurs during the process of building. It is
unquestionable that this phenomenon will become more serious if a larger number is
given. Moreover if input number is negative, the recursive process will theoretically
continue infinitely. Of course, the execution will be aborted when the provided space is
used up.

2. Mathematical limitation --- Strictly speaking, a mathematical limitation should not be
completely classified as limitation of symbolic and algebraic manipulation. For example,

the analytical solution for the general 5th polynomial is proven to be non-existent.

9 In some cases, the collapsing process may be impossible and the swelling phenomenon

will last to the end of execution if it is not beyond the capacity of the hardware system.
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Therefore it is also impossible for symbolic and algebraic manipulation to solve this
problem. However, in addition to the above mentioned example, difficulties in solving
mathematical equations whose analytical solutions exist are sometimes encountered. The
occurrence of this phenomenon is quite system dependent. In general, most of such
occurrences are encountered during integration and equation solving (algebraic and
differential equation).

7.4 Symbolic and algebraic manipulation and education

The impact of SAM to science and engineering is significant. There are many
publications of its application on celestial mechanics, relativity theory, and fluid mechanics.
Compared to such successful applications, the response from educational community is far
behind. So far, schools which officially include symbolic and algebraic manipulation in the
content of courses include Cornell University, The University of Pennsylvania, and The
University of Michigan. At Cornell University, MACSYMA was the first system introduced
into the graduate-level course, in the winter of 1983. It was not until the fall of 1984 that
Professor Richard Rand introduced the muMATH system into the sophomore engineering
mathematics course. Unlike the MACSYMA system which ran on the mainframe, the
muMATH system was implemented on IBM-XT and AT. At The University of Pennsylvania,
Professor H. H. Bau employed MACSYMA in the instruction of approximate analyses. At The
University of Michigan, Professor Noboru Kikuchi has used REDUCE to facilitate courses of
finite element methods and applied mathematics since 1985. The other system,
MATHEMATICA, was also implemented into the Macintosh Il in the computational laboratory
by Professor Kikuchi around 1988. Others such as Professor P. Papalambros and Professor
R. Scott also used REDUCE in the courses on optimal design and finite element method.

The introduction of symbolic and algebraic manipulation into the education field should
certainly be encouraged. So far, some critic views have been reported by students at The
University of Michigan. They are :

1. Since there is no introductory course in symbolic and algebraic manipulation, students
always struggle in learning the symbolic and algebraic manipulator itself rather than its
application to the subject.

2. Most of manuals of symbolic and algebraic manipulators, such as REDUCE and
MACSYMA, are unfriendly to the users. It is difficult for new users to understand the

new terminologies in such a short time.
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3. There is no appropriate textbook to facilitate to teach symbolic and algebraic
manipulation and its application!©. Unlike numerical analysis, the amounts of symbolic
and algebraic manipulation results are not predictable. Therefore if assignment is not
carefully designed, it could turn out just as simple as a symbol (say '0') or several
hundred pages of outputs or nothing at all due to the internal swelling problem.

4. Qualified instructors are not easily found.

5. The software may not be fully operational. For instance, the MACSY MA system at The
University of Michigan has just a half of its full capabilities. It is not easy to use because
some functions cannot be found even when they are listed in the manual. The
MATHEMATICA system is only implemented in some specific offices and is not yet
available for public use.

In order to overcome these problems, some proposals are suggested as follows :

1. The education of symbolic and algebraic manipulation should start from the early
undergraduate period. It is recommended that the existing "Numerical analysis" course
be revised into "Numerical analysis and symbolic manipulation". The concept of
symbolic manipulation, the use of available software, and the complementarity between
symbolic manipulation and numerical analysis should be taught in the course.

2. It is urgent to design a textbook for such a new course. The existing manuals need be

revised for easy accessibility.
3. The software systems should be rechecked and made available to the public.
7.5 Contributions of this study

The study presented in this report is believed to have made three original contributions
to applied mechanics and symbolic manipulation. They are :

A). To applied mechanics :

1. Before this study, all of the advantages from the applications of symbolic and algebraic
manipulation were either in handling lengthy formulae, or in increasing the accuracy of

solution. In addition, this report points out for the first time a new advantage in

10 The one written by Gerhand Rayna is rather an experimental book of REDUCE than an
application of REDUCE in applied mechanics.
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improving the efficiency of the execution of a numerical program. It is believed that this
advantage will be crucial in such applications that the development time plays an
important role. For instance, if the template is prepared in symbolic form beforehand and
implemented in a chip, the data received by a heat-seeking missile can simply be
substituted into the template. The response time will be substantially shortened.

2. The closed-form solution of a stiffness matrix of a 4-node quadrilateral isoparametric
element was not available before. This dissertation presents the first analytical solutions
of it. The contributions to the finite element analysis by this breakthrough are multifolds.
First, the integration error is eliminated and the solutions are more accurate. Secondly,
the closed-form solution can be automatically coded into a fortran subroutine. This
allows the element Qstiffness matrix to be obtained by simple substitution of nodal
coordinates. Of course, the fortran programming is simplified and the assemblage of the

global stiffness matrix 1s expedited.
B). To Symbolic and algebraic manipulation :

3. Although the difficulties of the internal swelling problem and mathematical limitation
were well known in the SAM field, no one has given the remedy for it. This report
proposes a sysmatic pre-treatment method to avoid these difficulties and then
successfully applies it to solve the problems.

7.6 Prospects and continuations of this research

As the criterion of the quality of results (in both industry and academia) becomes more
and more strict, it is expected that more and more sophisticated formulations will be produced.
Some expectations of future trends are as follows :

1. The design trend of symbolic and algebraic systems will continuously go towards
smaller, more convenient packages for personal computers or even calculators.

However, the mainframe SAM system will still co-exist to process large-expressions.

2. Applications of SAM in industry are scare at this time. However, this situation will
change gradually after the teaching of symbolic and algebraic manipulation is actually
implemented 1n schools.
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3. The relationship between numerical analysis and symbolic manipulation will be
smoother in the future. The switch from symbolic manipulation to numerical analysis (or

vice versa) is expected to be automatic eventually

4. The gap between theoretical analysis and computational experiments will be smaller and

smaller.

5. The reconsideration of every problem, equation, and formulation will become necessary.
Regardless of whether they have already been solved or not. The solved problem can be
used to check the correctness of solutions by SAM. The unsolved problem might then
become solvable with the employment of SAM.

6. The inclusion of higher order terms for applied mechanics problems will become popular
due to the availability of SAM systems.

7. To debug the symbolic program and to check the correctness of results are the important
associated tasks of symbolic and algebraic manipulation. It is expected that the self
debugging function of symbolic manipulators will be developed soon. A technique for
the sysmatic checking of results from symbolic and algebraic mantpulation should be

available in the future.

The following three topics are closely relative to this study, and should be continued in

future research. They are :

1. Extension of methodology in constructing a stiffness matrix for 2-D isoparametrical
quadrilateral element to a 3-D problem.

2
J D

2. Inclusion of the higher derivative term of F'r') in Equation (6.23) to Equation (6.25).
This was neglected in the original formulation by Lee and Kobayashi and in this thesis.

3. Extension of methodology presented in section 7.3 to solve the general shell problem.
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APPENDIX A

Proof of Equation (5.12)
Given: f(V,)=-m *g *,‘;—'[r
Prove : (V) -V, -f (@) -V =0
Proof : Let m*g =1 for simplicity,
F=f@)V, -f@) v
Vv, o o~ V7 L . ~
=-(TF77¢ V. -1 -V
(r—l'v' rﬂr )
V’V’. V:z (A 1)
- - -+ 5 .
IV,I |V|
There are three cases for discussions :

Case 1 : when V. >0 ,equation (A.1) will be

F=ve vV, >0, whenV, <0
=V.a- Vr[)’ {-O, when V, >0 (A.2)

Case2: whenV ' a0, equality is hold.

Case 3 : when V. <0, equation (A.1) will be

r-v:(—l—]%’—[),

Therefore, (7 ) - V: -f(V:)- V: > 0 Is proven

>0, whenV, =20
{- 0, whenV, <0 (A.3)
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APPENDIX B

Proof of Equation (5.16)
vV, ~
Given: f(V,)=-m»*g 1!

v 7| .
Prove:f(! If-dV,-f: favl . sf(V)y«(V, -V,

Proof : Let m*g =1 for simplicity,
jjv.'lf- dv = f!v:l- ]‘;—'JdV,f- t~-fJV:|—sign(V,)dV,
Ifv,>0= jjv:lj‘”- av, --|v;], jjv'f” dv, =-|v,|
Ifv,<0= jjv:lf”- av, =|v;} f!vlf‘ dv, = v |
There are four cases for discussions :
L.V;>0V, >0 case:

Leftsideof (B.)=— |V ;| + [V,|=- V] +V

r

V .
-- ]V—[(V' - V) =right side of (B.1)

» V>0V, <0 case -
Leftside of (B.1)=|V ;|- |V,|~-V  +V,
< - TV—'I(V: - V) =right side of (B.1)

3_V:<O,V, >OC&S€I

Leftside of B.)=—|V;|+ |V,|=V  +V
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1%
s-V +V, =- ]—'-[(V: - V) =right side of (B.1)
v,
4.V, <0V, <0 g -
Leftsideof (B.)=|V ;|- |[V,|=- V] +V

v, .
-_(V:_Vr)a—(_m)(vr _Vr)

=-1*(right side of (B.1)) (B.5)

Equation (B.5) implies that equality is hold and both sides of (B.1) are zero for

case 4.

Therefore equation (B.1) is proven.
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